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Abstract

Epidemic obesity is the most important risk factor for prediabetes and type 2 diabetes (T2D) in youth as it is in adults.
Obesity shares pathophysiological mechanisms with T2D and is likely to share part of the genetic background. We aimed to
test if weighted genetic risk scores (GRSs) for T2D, fasting glucose (FG) and fasting insulin (FI) predict glycaemic traits and if
there is a causal relationship between obesity and impaired glucose metabolism in children and adolescents. Genotyping of
42 SNPs established by genome-wide association studies for T2D, FG and FI was performed in 1660 Italian youths aged
between 2 and 19 years. We defined GRS for T2D, FG and FI and tested their effects on glycaemic traits, including FG, FI,
indices of insulin resistance/beta cell function and body mass index (BMI). We evaluated causal relationships between
obesity and FG/FI using one-sample Mendelian randomization analyses in both directions. GRS-FG was associated with FG
(beta = 0.075 mmol/l, SE = 0.011, P = 1.58 × 10−11) and beta cell function (beta = −0.041, SE = 0.0090 P = 5.13 × 10−6). GRS-T2D
also demonstrated an association with beta cell function (beta =−0.020, SE = 0.021 P = 0.030). We detected a causal effect of
increased BMI on levels of FI in Italian youths (beta = 0.31 ln (pmol/l), 95%CI [0.078, 0.54], P = 0.0085), while there was no
effect of FG/FI levels on BMI. Our results demonstrate that the glycaemic and T2D risk genetic variants contribute to higher
FG and FI levels and decreased beta cell function in children and adolescents. The causal effects of adiposity on increased
insulin resistance are detectable from childhood age.
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Introduction
Childhood obesity is growing around the globe. In some devel-
oped countries, the disease incidence plateaued; nonetheless,
the rate of severe obesity had increased worldwide (1). In Italy,
the prevalence of overweight and 3rd grade obese children has
decreased from 35.2% in 2008 to 30.6% in 2016, while the rate
of severely obese has reached 2.1% (2). This caused the onset
of health conditions previously considered exclusively adult
diseases, such as prediabetes (impaired fasting glucose, IFG,
and glucose tolerance, IGT) and type 2 diabetes (T2D), at an
earlier age.

Obesity, especially in children, is a major risk factor of T2D
and urges its study for diabetes prevention (3). Strong evidence
suggests that pathogenic mechanisms are shared between obe-
sity, prediabetes and T2D as well as causal effect of body adipos-
ity on hyperinsulinaemia and T2D in adults (4). The rates of their
occurrence differ among ethnicities, consistent with differences
in genetic susceptibility to T2D, currently less characterized in
youths than in adults. In Italy, 3% of adolescents with moder-
ate and severe obesity present IFG and 5% IGT, while T2D is
diagnosed in less than 0.5% of adolescents (5). An increased
amount of adipose tissue leads to more severe insulin resistance
(IR) via different mechanisms (i.e. lipotoxicity, release of some
adipokines etc.), thus promoting the development of T2D (6). The
early-life adiposity levels correlate with adulthood measures
and might therefore represent a longitudinal causal risk factor
for adult metabolic health deterioration, which requires further
insight from studies dissecting health of young individuals (7).

To date, over 400 genetic variants have been implicated in
the development of T2D and more than 500 genomic loci were
uniquely associated with body mass index (BMI) (8–11). In gen-
eral, these loci have small effect sizes, explaining approximately
6% of trait variance and disease susceptibility (12) when com-
bined. Studies in children (13) and young adults (14–20) have
demonstrated that genetic risk scores (GRSs) show stronger pre-
dictive ability in younger individuals than in older ones (21–25).
Several obesity genes harbour loci that are associated with T2D
but affect T2D susceptibility largely through their effect on BMI
via increased IR (e.g. FTO and MC4R gene variants) (26). However,
their effects on glucose homeostasis might be overestimated in
the context of obesity (27).

Dissection of the genetic effects on the quantitative
endophenotypes of T2D, including fasting glucose (FG), and
insulin (FI), indices of beta cell function (HOMA-B) and IR
(HOMA-IR) in individuals without diabetes, helps uncovering
the disease pathophysiology (28). The Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC) identified sixteen
loci associated with FG/HOMA-B, and two loci associated with
FI/HOMA-IR (29). Additional evidence was provided for 24
FG loci (12).

In this paper, we calculated GRS to combine the effects of
multiple genetic variants to increase the power of the study.
The choice of loci was based on reported associations of genetic
variants with FG, FI and T2D (30).

The selection of SNPs for this study was based on prioritiza-
tion of the variants with the largest effect size of the phenotype
of interest. These variants, including TCF7L2, FTO, MTNR1B and
G6PC2, were most frequently identified in the earliest GWAS
studies (Supplementary Material, Table S1) and confirmed by
multiple replications (28,31). This approach allowed us to detect
the effect in individuals of young age, when genetic effects are
usually smaller compared with adulthood. We hypothesized that
the GRSs for FG, FI and T2D are associated with glycaemic traits,

such as IR and beta cell function measured by HOMA-IR/HOMA-
B, and adiposity (BMI) as a quantitative measure of obesity in
children and adolescents. The aim of our study was to analyse
42 loci with the largest effects on T2D and glycaemic traits in
a cohort of children enrolled at the Bambino Gesù Children’s
Hospital in Rome, Italy, and to define the effects of these variants
on glycaemic traits and indices of IR, beta cell function, and BMI
as well as to evaluate the causal relationships between these
traits using genetic variants as instruments in a one-sample
Mendelian randomization (MR) framework.

Results
Our study included 1660 young European-descent individuals
from Italy with a mean BMI of 20.72 kg/m2 (range 10.42–
44.95 kg/m2) and a mean age of 9.09 years (range 2.02–
18.93 years) (Table 1). Most (1638; 98.67%) of the participants
had FG level below 5.6 mmol/l. Twenty (1.20%) participants had
FG values between 5.6 and 6.1 mmol/l and two (0.12%) had values
between 6.1 and 7.0 mmol/l. Most of them fell within the BMI
range between −2 and 2 of gender- and age-specific standard
deviation scores (SDS) of BMI units (Material and Methods) with
the exception of 205 individuals (12.35%) who were obese (BMI
values ≥2SD). These individuals with obesity were older and had
higher FG, FI, HOMA-B and HOMA-IR values when compared
with non-obese individuals.

We performed the association analyses with FG, FI, HOMA-
B, HOMA-IR and BMI SDS for the 42 variants, assuming an
additive genetic model implemented in linear regression and
detected nominally significant associations (P < 0.05) at eight FG,
eight T2D and two FI loci with the phenotypes tested (Material
and Methods, Supplementary Material, Table S1). For FG, we
observed the most significant associations with rs560887 near
G6PC2 (glucose-6-phosphatase 2) (P = 7.35 × 10−6), rs4607517 near
GCK (glucokinase) (P = 3.24 × 10−5) and rs10830963 at MTNR1B
(melatonin receptor 1B) (P = 4.37 × 10−5), of which the signals
at G6PC2 and MTNRB1 were also associated with HOMA-B
(P = 1.13 × 10−2 and P = 1.32 × 10−4, respectively). Additionally,
signals within MAP Kinase Activating Death Domain (MADD)
and Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing
9/transducin-like enhancer protein 4 (CHCHD9/TLE4) were
nominally associated with FG. For HOMA-B, we further observed
an association with rs10440833 at CDK5 regulatory subunit-
associated protein 1-like 1 (CDKAL1, P = 9.72 × 10−3). For FI, the
variant rs340874 at Prospero Homeobox 1 (PROX1) showed a
nominal association (P = 2.37 × 10−2). Furthermore, variation at
Peroxisome Proliferator Activated Receptor Gamma (PPARG) was
associated with FI (P = 4.49 × 10−2), HOMA-B (P = 2.15 × 10−3) and
HOMA-IR (P = 4.01 × 10−2). HOMA-IR was further associated with
rs12970134 at MC4R (melanocortin 4 receptor) (P = 3.25 × 10−2).
Variation at MC4R was also associated with age- and gender-
standardized BMI (P = 8.45 × 10−3), as were rs9939609 at FTO (fat
mass and obesity-associated) and rs11558471 at SLC30A8 (Solute
Carrier Family 30 Member 8), (P = 1.81 × 10−2 and P = 2.91 × 10−2,
respectively).

We calculated unweighted and weighted GRS for FG (20 SNPs),
FI (5 SNPs) and T2D (36 SNPs) (Material and Methods, Sup-
plementary Material, Table S1). Both unweighted and weighted
GRSs were further multiplied by the proportion of successfully
genotyped SNPs per individual. We compared the distributions
of the number of trait-increasing risk alleles for FG, FI and T2D
over the distributions of related phenotypes. As the number
of FG risk alleles increased, concentrations of FG increased,
whereas values of HOMA-B decreased (Fig. 1). However, contrary
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Table 1. Characteristics of the study sample

Phenotype Males (N = 889) Females (N = 771) P-value for difference∗
Mean ± SD Mean ± SD

Age (years) 9.07 ± 3.74 9.12 ± 3.91 0.82
BMI (kg/m2) 20.83 ± 5.59 20.59 ± 5.47 0.37
BMI SDS 0.47 ± 1.52 0.47 ± 1.41 0.97
FG (mmol/l) 4.58 ± 0.48 4.47 ± 0.50 2.27 × 10−5

FI (pmol/l) 54.91 ± 45.23 62.51 ± 49.62 0.0012
HOMA-B 108.28 ± 55.93 123.87 ± 60.88 7.74 × 10−8

HOMA-IR 0.99 ± 0.80 1.13 ± 0.88 0.0013

BMI, body mass index; FG, fasting glucose; FI, fasting insulin; SDS, standard deviation score; T2D, type 2 diabetes.
∗Difference between the mean values in male and female participants calculated by t-test.

Figure 1. Relationships between the number of fasting glucose (FG) risk alleles and FG (A), HOMA-B (B) and age- and BMI SDS (C).

to our study hypothesis, the BMI SDS measurement remained
relatively invariable compared with the number of FG risk alleles.
For the number of FI risk alleles, no significant association was
observed with FI, HOMA-IR or BMI SDS (Fig. 2). Similar results
were obtained for the relationship between T2D risk alleles and
FG, FI, HOMA-B, HOMA-IR and BMI SDS (Fig. 3).

When grouping the phenotype distributions according to
percentiles, we observed that the individuals in the highest
(>95%) percentile group of FG had a slightly increased num-
ber of FG risk alleles (meangroup1 = 22.86, meangroup2 = 23.45,
meangroup3 = 23.84; P = 0.026 in the linear regression of the num-
ber of FG risk alleles on the percentile group), whereas the oppo-
site was true for HOMA-B (meangroup1 = 23.84, meangroup2 = 23.46,
meangroup3 = 22.61; P = 0.0050). No such effect was detected for the
BMI SDS percentile groups (meangroup1 = 23.67, meangroup2 = 23.43,
meangroup3 = 23.16; P = 0.24) (Fig. 4).

A higher number of FG risk alleles was associated with
elevated FG (beta = 0.075, 95%CI [0.053;0.097] mmol/l per unit
increase in the weighted GRS) and lower HOMA-B values
(beta = −0.041, 95%CI [−0.059;−0.024] ln(HOMA-B) units per unit
increase in the weighted GRS) after adjustment for age, sex
and BMI SDS (Material and Methods, Table 2). The weighted
T2D GRS was associated with lower HOMA-B values (−0.020
[−0.038;−0.0019]) after adjusting for age, sex and BMI SDS
(Table 2). The unweighted GRS provided mostly similar but
weaker associations than the weighted GRS (Table 2), except for
the unweighted FG GRS that showed a trend towards a negative
association with FI levels (−0.024 [−0.050, 0.0029] ln(pmol/l),
P = 0.082) and this was further strengthened (−0.028 [−0.055,
−0.0016] ln(pmol/l), P = 0.038) when adding adjustment for family
history of T1D and T2D. It is worth noticing that this additional

adjustment had in general no noticeable effect on the other
estimates (Material and Methods, Supplementary Material, Table
S2). We did not observe any evidence for association between
the FG and FI GRSs and BMI SDS or obesity status, including
adjustments for sex, age, BMI SDS and family history of T1D and
T2D (Table 3).

We evaluated the associations between FG/FI and BMI for
causality in a bi-directional one-sample MR framework (Material
and Methods). We identified a positive causal effect of BMI on FI
(P = 0.0085) (Table 4). The IV estimator indicated a causal effect of
0.31 ln(pmol/l) higher FI (95%CI [0.078;0.54]) per unit increase in
BMI SDS. We did not observe a causal effect in the other direction.
Contrary to the observed epidemiological associations, we did
not find evidence for a causal effect of BMI on the levels of FG
and vice versa. However, this could be due to low power as the
epidemiological effect estimates between BMI and FG in either
direction are lower than those between BMI and FI (Table 4).
Additionally, the low F-statistic of the FI IV (Table 4) suggests
weak instrument bias and low power of the MR analysis testing
the effect of FI levels on BMI.

Discussion
Our results confirm the ability of a GRS combining 20 inde-
pendent genetic variants, associated with FG in previous GWAS
(12,28,32,33), to predict values of fasting glucose and beta cell
activity in children and adolescents already. Using a one-sample
MR approach, we discovered that a causal effect of adiposity via
BMI on FI levels is detectable as early as in childhood/teenage
years.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
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Figure 2. Relationships between the number of fasting insulin (FI) risk alleles and FI (A) HOMA-IR (B) and age- and BMI SDS (C).

Figure 3. Relationships between the number of type 2 diabetes (T2D) risk alleles and FG (A), FI (B), HOMA-B (C), HOMA-IR (D), and BMI SDS (E).

Effects of adiposity on altered glucose metabolism

The present investigation expands on earlier findings in adults
on FTO/MC4R-mediated adiposity’s effect on increased fasting
insulin levels (34,35) to its earlier age manifestation in children
and adolescents. Despite much larger sample sizes in earlier
adult studies, the causal effect of adiposity on FI in our study is
comparable to that in adults (35). While we were able to observe a
causal effect in the combined cohort, we were underpowered to
perform sex-stratified analyses and to validate the larger causal
effect of BMI on FI reported in men compared with women (4).
This study did not find evidence for a causal effect of adiposity

on FG, possibly due to lack of statistical power. The lack of
causal effect of BMI on FG is in contrast to the findings of Dale
et al. and Xu et al. who report a causal effect of BMI on glucose
levels with markedly lower causal effect size than that between
BMI and insulin (36,37). Even though our causal analyses from
BMI to FI and FG used only two variants, namely those within
FTO and MC4R, to date, these are the most strongly associated
with BMI and have been successfully used as instrumental vari-
ables to estimate causal effects previously (4,38). The F-statistic
of the BMI instrument (Table 4) demonstrates that these two
variants make a strong enough IV in this study. Our findings
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Figure 4. Relationship between the number of fasting glucose (FG) risk alleles and FG (A), HOMA-B (B), and BMI SDS (C). The results from the association analyses using

linear regression of both GRS types, weighted and unweighted, confirmed the findings from the comparison of phenotypic distributions in relation to allele counts

(Table 2).

support a crucial role of adiposity in the development of IR in
young individuals. During puberty, IR is changing drastically,
when insulin sensitivity undergoes a decline of around 25–
50% during puberty and improves when puberty ends (39,40).
Visceral and subcutaneous adipose tissue secrete free fatty acids
and pro-inflammatory cytokines into blood that contribute to
IR (41). Changes related to increased adiposity affect the com-
plex interplay between pathophysiological processes already in
early age, which might increase the risk of early onset T2D and
comorbidities.

Genetic variants associated with adiposity

Our findings are in line with previous studies that linked genetic
variants near MC4R and FTO genes with adiposity traits and
T2D (42). MC4R rs12970134 is associated with increased risk of
T2D and higher BMI in both European and trans-ethnic studies
(8,26). The Nord-Trøndelag Health (HUNT) study assessing gene–
environment interactions of FTO and MC4R on obesity in people
with extreme phenotypes observed age- and gender-dependent
associations of rs9939609 (FTO) and rs17782313 (MC4R) loci with
BMI (43). Notably, the effect sizes of FTO tended to be the high-
est in the youngest age group for both genders; for MC4R, the
highest effect on BMI was observed in the youngest age group,
dipping in the middle age and increasing again after the age
of sixty, while in men, it peaked at 40–60 years and became
negligible later in life (43). The FTO locus is not only strongly
associated with T2D (42) and higher BMI (44), but also with
higher FI and HOMA-IR (29). These observations are in agree-
ment with BMI playing a role in the FTO association with T2D
via IR.

Effects on altered glucose metabolism in adult and
paediatric populations

In our analysis, the GRS for FG comprising 20 DNA variants
explained 2.76% of the variability in FG (beta = 0.075 mmol/l,
P = 1.58 × 10−11) and 0.34% of the variability in β-cell function
(beta = 0.042, P = 5.13 × 10−6). A number of studies (13–20,45) eval-
uated the performance of glucose homeostasis GRSs as a useful
tool to estimate the effects of multiple risk alleles predicting
prevalent or incident cases of T2D.

Similarly, in cross-sectional studies of normal-weight and
overweight/obese children, T2D and FI GRSs comprising 62 (23)

and 53 (9) SNPs were associated with different glycaemic traits,
particularly with FG and estimates of beta cell function.

Genetic variants associated with fasting glucose
and β-cell function

We confirmed previously established associations of some of
the T2D susceptibility variants with glucose metabolism traits
(Supplementary Material, Table S1). Specifically, among 20 loci
previously implicated in FG variability, G6PC2, GCK and MTNR1B
variants showed effects on FG in Italian children consistent
with those found in European children in MAGIC (28,29) and
in adults (46). According to our results and previous studies,
two of these genes, G6PC2 and MTNR1B, have been found to
be associated with β-cell function in adults (47,48). Increased
MTNR1B expression in individuals at risk of T2D suggests a
direct inhibitory effect on beta cells (47). Our results demonstrate
a significant association between MADD and PPARG loci and
HOMA-B, consistent with previous reports (49,50). Our study
provides evidence that CDKAL1 variants confer risk of T2D
through reduced insulin secretion, which is also in line with
the findings of the genome-wide association study in European
and Hong Kong populations (51).

Study limitations

We acknowledge the limitations of our study of which the
limited sample size and the wide age range are the most
evident. Other limitations include the cross-sectional design;
the weights taken from older populations and effect sizes for
risk variants can vary between different age groups and might
not provide as good a predictive ability; the limited number of
variants investigated; the proxy estimation of fasting IR and β-
cell function; the lack of information on pubertal status and the
enrolment of individuals with exclusively European descent. In
an attempt to mitigate the limitation of wide age range, we used
gender- and age-specific standardized obesity indices (BMI SDS).
Future investigations must consider the changing physiology
and hormonal levels during pubertal transition; they should
enrol individuals of non-European descent to better reflect
the evolving multi-ethnic nature of populations in Italy and
worldwide; and the FG GRS should be validated in longitudinal
studies. Additionally, the GRSs in our study are constructed
based on a relatively small number of variants from pioneer
GWAS studies. Therefore, as more variants are characterized,
improved GRSs should be constructed.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
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Table 3. Effects of FG/FI/T2D genetic risk scores on obesity

Model Obese (N = 205) versus non-obese (N = 1350)
(control group 1) a

Obese (N = 205) versus non-overweight (N = 639)
(control group 2) b

Unadjusted Adjusted c Unadjusted Adjusted c

OR (95% CI) c P-value OR (95% CI) c P-value OR (95% CI) c P-value OR (95% CI) c P-value

Weighted GRS
GRS_FG 1.00 (0.86–1.15) 0.96 0.97 (0.83–1.13) 0.74 1.00 (0.86–1.18) 0.96 1.00 (0.84–1.19) 0.99
GRS_FI 0.98 (0.85–1.13) 0.78 0.98 (0.84–1.13) 0.74 0.94 (0.81–1.10) 0.48 0.93 (0.79–1.10) 0.41
GRS_T2D 0.93 (0.80–1.07) 0.31 0.91 (0.78–1.06) 0.22 0.99 (0.85–1.15) 0.89 0.99 (0.84–1.17) 0.91
Unweighted GRS
GRS_FG 0.95 (0.82–1.10) 0.48 0.93 (0.80–1.09) 0.36 0.94 (0.30–1.03) 0.45 0.93 (0.79–1.11) 0.44
GRS_FI 0.99 (0.86–1.15) 0.93 0.99 (0.85–1.15) 0.86 0.96 (0.82–1.11) 0.60 0.95 (0.80–1.12) 0.52
GRS_T2D 0.97 (0.84–1.12) 0.68 0.96 (0.82–1.12) 0.58 1.02 (0.88–1.20) 0.77 1.02 (0.86–1.20) 0.83

FG, fasting glucose; FI, fasting insulin; GRS, genetic risk score; SDS, standard deviation score; T2D, type 2 diabetes.
aObese individuals: BMI SDS > =2; non-obese individuals: −2 < BMI SDS < 2.
bObese individuals: BMI SDS > =2; non-overweight individuals: −1 < BMI SDS < 1.
cAdjusted for age, sex and family history of T1D and T2D.

Table 4. Mendelian randomization analysis

Causal relationship tested
(exposure on outcome)

Epidemiological association Causal effect, instrumental variable (IV) approach

β (95%CI) P-value F-stat (IV) βIV(95%CI) P-value

FG on BMI 0.68 (0.54, 0.82) 6.70 × 10−21 46.98 0.61 (−0.22, 1.43) 0.15
FI on BMI 0.96 (0.89, 1.043) 1.75 × 10−109 0.79 −2.55 (−11.15, 6.053) 0.56
BMI on FG 0.077 (0.061, 0.093) 6.70 × 10−21 15.72 0.049 (−0.12, 0.21) 0.56
BMI on FI 0.27 (0.25, 0.29) 1.75 × 10−109 15.72 0.31 (0.078, 0.54) 0.0085

Mendelian randomization analyses using the Two-Stage-Least Squares method. FG, fasting glucose (mmol/l); BMI, body mass index (kg/m2); FI, fasting insulin
(ln(pmol/l)). For the instrumental variable analyses, estimates are reported in units of the outcome as described in the previous sentence per amount of increase
in the exposure attributable to one unit increase in the genetic instrument of the exposure. For the statistically significant causal relationship of BMI on FI, one unit
increase in BMI GRS corresponds to 0.14 (95%CI [0.070;0.21]) standard deviation score increase in BMI.

Conclusion

We report that T2D risk genetic variants contribute to higher FG
levels and beta cell function in Italian children and adolescents.
We provide novel evidence for a causal effect of childhood adi-
posity on higher FI levels validating previously published results
in adults. Further larger studies in children are mandatory to
expand present knowledge of the genetic overlap between child-
hood/adolescent age obesity and risk of T2D.

Materials and Methods
Study sample

The study sample comprised individuals referred to the Bambino
Gesù Children’s Hospital in Rome, Italy, between July 2012 and
July 2013 by general practitioners from the Metropolitan Area of
Rome (Italy) to participate in ‘The Bambino Gesù Study: Profil-
ing the genetic risk of complex diseases in the Italian popula-
tion’. The primary aim of the study was to dissect the genetic
architecture of glucose homeostasis in the Italian children and
adolescents. The study was approved by the Ethics Committee
of the Bambino Gesù Hospital, and written informed consent
was obtained from the child’s parents or legal guardians in
accordance with the Helsinki declaration (52).

In total, 1806 participants were enrolled in the study. We
excluded participants below 2 or above 19 years of age (N = 10),
non-Europeans (N = 135) and one individual with an FG value
≥7 mmol/l. The final study sample included 1660 (889 male)
participants of European descent aged between 2 and 19 years
(Supplementary Material, Fig. S1). None of the participants

were following a weight loss diet or an intensive exercise
program, and, at the time of enrolment, all study participants
were healthy. Information on family history of diabetes in the
first-degree relatives was obtained by a short questionnaire
completed by both parents (53).

Anthropometric measurements and biochemical assays

Weight and height were measured using standard procedures
(54). All participants were asked to refrain from intensive
physical activity in the 3 days prior to the study. Fasting glucose
was measured by glucose oxidase technique (Cobas Integra,
Roche) and insulin by a chemiluminescent immunoassay
method (ADVIA Centaur analyzer; Bayer Diagnostics).

Phenotypes

Body mass index (BMI) (kg/m2). Gender- and age-specific stan-
dard deviation scores (SDS) of BMI were calculated (Supplemen-
tary Material, Fig. S2) with the Growth Analyser RCT tool (version
3.0, https://www.growthanalyser.org/; Dutch Growth Research
Foundation, Rotterdam, the Netherlands). Within the Growth
Analyser, BMI data of 2- to 20-year-olds from Italy were used as
the reference (54). We also dichotomized the BMI-SDS scores into
obese (SDS ≥ 2) and non-obese using two different definitions
for the control groups: (1) non-obese (−2 < BMI SDS < 2) and (2)
non-overweight (−1 < BMI SDS < 1). The distribution of the BMI
SDS scores according to age of the participants is shown in
Figure 5.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
https://www.growthanalyser.org/
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Figure 5. BMI SDS values of the Bambino Gesù study sample within their age

distribution. Colours represent BMI SDS groups as displayed in the figure insert.

The bars represent subject counts within each BMI SDS group by the age group

(x-axis). The green line shows the age density of the study sample.

Fasting insulin (FI) and glucose (FG). None of the included chil-
dren had diabetes according to WHO criteria (55). We used
different units for FG and FI (mmol/l and pmol/l, respectively)
for the calculation of indices. Indices of insulin sensitivity and
beta cell function, namely HOMA-IR and HOMA-B, were calcu-
lated using the HOMA calculator provided by the University of
Oxford (https://www.dtu.ox.ac.uk/homacalculator/). To reduce
skewness, FI, HOMA-IR and HOMA-B were natural logarithm
transformed.

DNA extraction

DNA was extracted from 300 ul of whole blood using the QIAsym-
phony DSP DNA kit. The extraction was performed on the auto-
mated extractor QIAsymphony SP workstation Qiagen, Hilden,
Germany) according to manufacturer procedure. DNA was eluted
in 200 ul deionized water.

SNP genotyping

For the analysis, we selected 42 DNA variants reported in
previous publications (Supplementary Material, Table S1)
(12,28,33,56). The SNP genotyping was performed using Agena

MassArray
®

System (Agena Bioscience, San Diego, USA). SNPs

were assayed and typed using iPLEX
®

chemistry on a matrix-
assisted laser desorption/ionization time-of-flight (MALDI-
TOF) mass spectrometer. All biochemical reactions were
performed as recommended by the manufacturer. The iPLEX
single base extension was spotted on 384-SpectroChips and
analysed in the MassARRAY Analyzer. MassARRAY Typer 4.0
software was used for evaluating and managing the genotype
results.

Quality control of genetic data

For the quality control (QC) purposes, missing rate per indi-
viduals and missing rate per SNP were calculated. In addition,
for QC of SNP genotyping, positive and negative template
control samples were included in each assay plate. Any
assay found as positive in the negative template control was
removed from the study. We kept SNPs with missingness
≤0.02, Hardy–Weinberg equilibrium test P-value < 1 × 10−6,

SNP genotyping call rate ≥ 95% and minor allele frequency
(MAF) > 1%.

Statistical analyses

All statistical analyses were performed using the software pack-
age R version 3.5.1 (57).

Genetic risk scores (GRSs). We calculated unweighted and
weighted GRS for FG (20 SNPs), FI (5 SNPs) and T2D (36 SNPs)
(see Supplementary Material, Table S1 for the list of SNPs used).
Effect sizes of genetic variants on each specific phenotype were
obtained from large-scale consortia with mean age ranging
from 31.0 to 73.4 (12,28,33,56). For the unweighted GRS, the
numbers of effect alleles (0, 1, 2) for each SNP were added
up, while for the calculation of the weighted GRS, each effect
allele count for each SNP was multiplied by the reported effect
size of the effect allele (beta for all, i.e. log(OR) for T2D). If the
reported SNP was not available in our data, we used an SNP in
linkage disequilibrium and further weighted the SNP by the r2

value (58). Both unweighted and weighted GRSs were further
multiplied by the proportion of successfully genotyped SNPs per
individual. The distributions of the GRSs for each respective set
of established loci by phenotype were investigated against the
distributions of the phenotypes of interest, e.g. FG, FI and T2D.
For the association analyses described below, the GRSs were
standardized to have a mean value of 0 and standard deviation
of 1 to allow comparison of effect estimates across different
GRSs and the outcome variables.

Association analysis. We performed the association analysis
with FG, FI, HOMA-B, HOMA-IR and BMI SDS for the 42 geno-
typed SNPs assuming an additive genetic model using linear
regression. Unweighted and weighted GRSs were also tested for
association with FG, FI, HOMA-B, HOMA-IR and BMI SDS via
linear regression. Logistic regression was used for the associ-
ation analysis of GRS and obese versus non-obese individuals.
For the linear regression, we report the effects as regression
coefficients with their 95% confidence intervals (CIs), whereas
for logistic regression, we provide estimates of odds ratios (OR)
with their 95% CIs. We report unadjusted associations as well as
analyses adjusted for (1) age, sex and BMI SDS (BMI adjustment
not done when BMI or obesity is the outcome), and (2) age,
sex, BMI SDS and family history of T1D and T2D. We applied a
Bonferroni correction to adjust for multiple testing. The P-value
thresholds for statistical significance after Bonferroni correction
were P = 0.0025, 0.0014 and 0.008 for 5, 20 and 36 tests for FI, FG
and T2D SNPs, respectively.

Mendelian randomization. We evaluated the casual relationship
between FG/FI and BMI in a one-sample MR framework (Fig. 6)
using Two-Stage-Least Squares (2SLS) as implemented in the
ivreg(v.0.5–0) R package. In 2SLS, the first regression model
regresses the exposure on the genetic instruments providing
fitted exposure values independent of the confounders. The
second stage of 2SLS regresses the outcome on the fitted values
of the exposure. The genetic instrument for FG was the same
as the GRS for FG described previously, whereas the instrument
for FI comprised of four variants after excluding the FTO variant
from the FI GRS. The genetic instrument for BMI was constructed
from the FTO and MC4R variants, and we used the effect sizes
as reported (8). Since Locke et al. reported different variants for
these two loci, we further weighted the effect sizes by the r2

values between the reported lead variants and the variants used

https://www.dtu.ox.ac.uk/homacalculator/
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab287#supplementary-data
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Figure 6. Mendelian randomization analysis to explore causality between BMI

and FG/FI. (A) IV estimator is calculated as the beta coefficient from the associa-

tion of GRSBMI with FG or FI divided by the beta coefficient from the association

of GRSBMI with BMI (IV estimator = 0.31 pmol/l/BMI unit). The IV estimator is

equivalent to what is seen when FI is regressed on BMI. These results are

supportive of a causal, non-confounded relationship. (B) The relationship of FG

or FI with BMI.

in the present study. We report F-statistics from the regression
model of the exposure on the corresponding IV as a measure
of instrument strength. Causal effects estimated in MR are only
valid if the following core assumptions hold true: (1) the genetic
instrument has a true effect on the exposure and that (2) it
only affects the outcome through its effect on the exposure as
well as (3) it is independent of any measured and unmeasured
confounding factors of the exposure–outcome relationship.

Supplementary Data
Supplementary Material is available at HMG online.

Data availability
The datasets generated during and/or analysed during the cur-
rent study are not publicly available for reasons related to privacy
and participant consent but are available from the correspond-
ing author on reasonable request.
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14. Stančáková, A., Kuulasmaa, T., Kuusisto, J., Mohlke, K.L.,
Collins, F.S., Boehnke, M. and Laakso, M. (2017) Genetic risk
scores in the prediction of plasma glucose, impaired insulin
secretion, insulin resistance and incident type 2 diabetes in
the METSIM study. Diabetologia, 60, 1722–1730.

15. Lotta, L.A., Gulati, P., Day, F.R., Payne, F., Ongen, H., Van
De Bunt, M., Gaulton, K.J., Eicher, J.D., Sharp, S.J. and Rolfe,
E.D.L. (2017) Integrative genomic analysis implicates limited
peripheral adipose storage capacity in the pathogenesis of
human insulin resistance. Nat. Genet., 49, 17.

16. Vassy, J.L., Hivert, M.-F., Porneala, B., Dauriz, M., Florez, J.C.,
Dupuis, J., Siscovick, D.S., Fornage, M., Rasmussen-Torvik, L.J.
and Bouchard, C. (2014) Polygenic type 2 diabetes predic-
tion at the limit of common variant detection. Diabetes, 63,
2172–2182.

17. Vaxillaire, M., Yengo, L., Lobbens, S., Rocheleau, G., Eury, E.,
Lantieri, O., Marre, M., Balkau, B., Bonnefond, A. and Froguel,
P. (2014) Type 2 diabetes-related genetic risk scores associ-
ated with variations in fasting plasma glucose and devel-
opment of impaired glucose homeostasis in the prospective
DESIR study. Diabetologia, 57, 1601–1610.

18. Jensen, A.C., Barker, A., Kumari, M., Brunner, E.J., Kivimäki,
M., Hingorani, A.D., Wareham, N.J., Tabák, A.G., Witte, D.R.
and Langenberg, C. (2011) Associations of common genetic
variants with age-related changes in fasting and postload
glucose: evidence from 18 years of follow-up of the White-
hall II cohort. Diabetes, 60, 1617–1623.

19. Andersson, E.A., Allin, K.H., Sandholt, C.H., Borglykke, A., Lau,
C.J., Ribel-Madsen, R., Sparsø, T., Justesen, J.M., Harder, M.N.
and Jørgensen, M.E. (2013) Genetic risk score of 46 type 2
diabetes risk variants associates with changes in plasma
glucose and estimates of pancreatic β-cell function over 5
years of follow-up. Diabetes, 62, 3610–3617.

20. Go, M.J., Lee, Y., Park, S., Kwak, S.H., Kim, B.-J. and Lee, J. (2016)
Genetic-risk assessment of GWAS-derived susceptibility loci
for type 2 diabetes in a 10 year follow-up of a population-
based cohort study. J. Hum. Genet., 61, 1009–1012.

21. Lyssenko, V., Jonsson, A., Almgren, P., Pulizzi, N., Isomaa, B.,
Tuomi, T., Berglund, G., Altshuler, D., Nilsson, P. and Groop, L.
(2008) Clinical risk factors, DNA variants, and the develop-
ment of type 2 diabetes. N. Engl. J. Med., 359, 2220–2232.

22. de Miguel-Yanes, J.M., Shrader, P., Pencina, M.J., Fox, C.S.,
Manning, A.K., Grant, R.W., Dupuis, J., Florez, J.C., D’Agostino,
R.B. and Cupples, L.A. (2011) Genetic risk reclassification for
type 2 diabetes by age below or above 50 years using 40 type
2 diabetes risk single nucleotide polymorphisms. Diabetes
Care, 34, 121–125.

23. Vassy, J., Durant, N., Kabagambe, E., Carnethon, M.R.,
Rasmussen-Torvik, L.J., Fornage, M., Lewis, C., Siscovick, D.
and Meigs, J. (2012) A genotype risk score predicts type 2 dia-
betes from young adulthood: the CARDIA study. Diabetologia,
55, 2604–2612.

24. Vassy, J.L., DasMahapatra, P., Meigs, J.B., Schork, N.J., Mag-
nussen, C.G., Chen, W., Raitakari, O.T., Pencina, M.J., Jamal,
S.M. and Berenson, G.S. (2012) Genotype prediction of adult
type 2 diabetes from adolescence in a multiracial popula-
tion. Pediatrics, 130, e1235–e1242.

25. Walford, G.A., Porneala, B.C., Dauriz, M., Vassy, J.L., Cheng, S.,
Rhee, E.P., Wang, T.J., Meigs, J.B., Gerszten, R.E. and Florez, J.C.
(2014) Metabolite traits and genetic risk provide complemen-
tary information for the prediction of future type 2 diabetes.
Diabetes Care, 37, 2508–2514.

26. Mahajan, A., Go, M.J., Zhang, W., Below, J.E., Gaulton, K.J., Fer-
reira, T., Horikoshi, M., Johnson, A.D., Ng, M.C., Prokopenko, I.
et al. (2014) Genome-wide trans-ancestry meta-analysis pro-
vides insight into the genetic architecture of type 2 diabetes
susceptibility. Nat. Genet., 46, 234–244.

27. Florez, J. (2008) Newly identified loci highlight beta cell dys-
function as a key cause of type 2 diabetes: where are the
insulin resistance genes? Diabetologia, 51, 1100.

28. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo,
N., Jackson, A.U., Wheeler, E., Glazer, N.L., Bouatia-Naji, N.,
Gloyn, A.L. et al. (2010) New genetic loci implicated in fasting
glucose homeostasis and their impact on type 2 diabetes
risk. Nat. Genet., 42, 105–116.

29. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser, M.E.,
Luan, J., Magi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson,
S. et al. (2012) Large-scale association analyses identify new
loci influencing glycemic traits and provide insight into the
underlying biological pathways. Nat. Genet., 44, 991–1005.

30. Grarup, N., Sandholt, C.H., Hansen, T. and Pedersen, O.
(2014) Genetic susceptibility to type 2 diabetes and obesity:
from genome-wide association studies to rare variants and
beyond. Diabetologia, 57, 1528–1541.

31. Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina,
C., Welch, R.P., Zeggini, E., Huth, C., Aulchenko, Y.S., Thor-
leifsson, G. et al. (2010) Twelve type 2 diabetes susceptibility
loci identified through large-scale association analysis. Nat.
Genet., 42, 579–589.

32. Scott, R.A., Chu, A.Y., Grarup, N., Manning, A.K., Hivert, M.-
F., Shungin, D., Tönjes, A., Yesupriya, A., Barnes, D. and
Bouatia-Naji, N. (2012) No interactions between previously
associated 2-hour glucose gene variants and physical activ-
ity or BMI on 2-hour glucose levels. Diabetes, 61, 1291–1296.

33. Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina,
C., Welch, R.P., Zeggini, E., Huth, C., Aulchenko, Y.S. and
Thorleifsson, G. (2010) Twelve type 2 diabetes susceptibility
loci identified through large-scale association analysis. Nat.
Genet., 42, 579.

34. Freathy, R.M., Timpson, N.J., Lawlor, D.A., Pouta, A., Ben-
Shlomo, Y., Ruokonen, A., Ebrahim, S., Shields, B., Zeggini,



826 Human Molecular Genetics, 2022, Vol. 31, No. 5

E., Weedon, M.N. et al. (2008) Common variation in the FTO
gene alters diabetes-related metabolic traits to the extent
expected given its effect on BMI. Diabetes, 57, 1419–1426.

35. Fall, T., Hagg, S., Magi, R., Ploner, A., Fischer, K., Horikoshi, M.,
Sarin, A.P., Thorleifsson, G., Ladenvall, C., Kals, M. et al. (2013)
The role of adiposity in cardiometabolic traits: a Mendelian
randomization analysis. PLoS Med., 10, e1001474.

36. Xu, L., Borges, M.C., Hemani, G. and Lawlor, D.A. (2017) The
role of glycaemic and lipid risk factors in mediating the
effect of BMI on coronary heart disease: a two-step, two-
sample Mendelian randomisation study. Diabetologia, 60,
2210–2220.

37. Dale, C.E., Fatemifar, G., Palmer, T.M., White, J., Prieto-Merino,
D., Zabaneh, D., Engmann, J.E.L., Shah, T., Wong, A., Warren,
H.R. et al. (2017) Causal associations of adiposity and body fat
distribution with coronary heart disease, stroke subtypes,
and type 2 diabetes mellitus: a Mendelian randomization
analysis. Circulation, 135, 2373–2388.

38. Hägg, S., Fall, T., Ploner, A., Mägi, R., Fischer, K., Draisma, H.H.,
Kals, M., de Vries, P.S., Dehghan, A., Willems, S.M. et al. (2015)
Adiposity as a cause of cardiovascular disease: a Mendelian
randomization study. Int. J. Epidemiol., 44, 578–586.

39. Whincup, P.H., Gilg, J.A., Papacosta, O., Seymour, C., Miller,
G.J., Alberti, K.G. and Cook, D.G. (2002) Early evidence of
ethnic differences in cardiovascular risk: cross sectional
comparison of British south Asian and white children. BMJ
(Clinical Research ed.), 324, 635.

40. Tagi, V.M., Giannini, C. and Chiarelli, F. (2019) Insulin resis-
tance in children. Front. Endocrinol., 10.

41. Preis, S.R., Massaro, J.M., Robins, S.J., Hoffmann, U., Vasan,
R.S., Irlbeck, T., Meigs, J.B., Sutherland, P., D’Agostino, R.B.,
Sr., O’Donnell, C.J. et al. (2010) Abdominal subcutaneous and
visceral adipose tissue and insulin resistance in the Fram-
ingham heart study. Obesity (Silver Spring), 18, 2191–2198.

42. Scott, R.A., Scott, L.J., Magi, R., Marullo, L., Gaulton, K.J., Kaaki-
nen, M., Pervjakova, N., Pers, T.H., Johnson, A.D., Eicher, J.D.
et al. (2017) An expanded genome-wide association study of
type 2 diabetes in Europeans. Diabetes, 66, 2888–2902.

43. Bjørnland, T., Langaas, M., Grill, V. and Mostad, I.L. (2017)
Assessing gene-environment interaction effects of FTO,
MC4R and lifestyle factors on obesity using an extreme
phenotype sampling design: results from the HUNT study.
PLoS One, 12.

44. Speliotes, E.K., Willer, C.J., Berndt, S.I., Monda, K.L., Thor-
leifsson, G., Jackson, A.U., Lango Allen, H., Lindgren, C.M.,
Luan, J.a., Mägi, R. et al. (2010) Association analyses of 249,796
individuals reveal 18 new loci associated with body mass
index. Nat. Genet., 42, 937–948.

45. Morandi, A., Bonnefond, A., Lobbens, S., Yengo, L., Miraglia
del Giudice, E., Grandone, A., Lévy-Marchal, C., Weill, J., Maf-
feis, C. and Froguel, P. (2016) Associations between type
2 diabetes-related genetic scores and metabolic traits, in
obese and normal-weight youths. J. Clin. Endocrinol. Metabol.,
101, 4244–4250.

46. Prokopenko, I., Langenberg, C., Florez, J.C., Saxena, R.,
Soranzo, N., Thorleifsson, G., Loos, R.J., Manning, A.K., Jack-

son, A.U., Aulchenko, Y. et al. (2009) Variants in MTNR1B
influence fasting glucose levels. Nat. Genet., 41, 77–81.

47. Lyssenko, V., Nagorny, C.L., Erdos, M.R., Wierup, N., Jonsson,
A., Spégel, P., Bugliani, M., Saxena, R., Fex, M., Pulizzi, N.
et al. (2009) Common variant in MTNR1B associated with
increased risk of type 2 diabetes and impaired early insulin
secretion. Nat. Genet., 41, 82–88.

48. THart, L.M., Simonis-Bik, A.M., Nijpels, G., van Haeften,
T.W., Schäfer, S.A., Houwing-Duistermaat, J.J., Boomsma, D.I.,
Groenewoud, M.J., Reiling, E., van Hove, E.C. et al. (2010)
Combined risk allele score of eight type 2 diabetes genes
is associated with reduced first-phase glucose-stimulated
insulin secretion during hyperglycemic clamps. Diabetes, 59,
287–292.

49. Gupta, D., Kono, T. and Evans-Molina, C. (2010) The role of
peroxisome proliferator-activated receptor γ in pancreatic β

cell function and survival: therapeutic implications for the
treatment of type 2 diabetes mellitus. Diabetes Obes. Metab.,
12, 1036–1047.

50. Li, L.-c., Wang, Y., Carr, R., Haddad, C.S., Li, Z., Qian, L.,
Oberholzer, J., Maker, A.V., Wang, Q. and Prabhakar, B.S. (2014)
IG20/MADD plays a critical role in glucose-induced insulin
secretion. Diabetes, 63, 1612–1623.

51. Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I.,
Benediktsson, R., Jonsdottir, T., Walters, G.B., Styrkarsdottir,
U., Gretarsdottir, S., Emilsson, V., Ghosh, S. et al. (2007) A
variant in CDKAL1 influences insulin response and risk of
type 2 diabetes. Nat. Genet., 39, 770–775.

52. (2013) World medical association declaration of Helsinki:
ethical principles for medical research involving human
subjects. JAMA, 310, 2191–2194.

53. Shashaj, B., Luciano, R., Contoli, B., Morino, G.S., Spreghini,
M.R., Rustico, C., Sforza, R.W., Dallapiccola, B. and Manco, M.
(2016) Reference ranges of HOMA-IR in normal-weight and
obese young Caucasians. Acta Diabetol., 53, 251–260.

54. Cacciari, E., Milani, S., Balsamo, A., Spada, E., Bona, G.,
Cavallo, L., Cerutti, F., Gargantini, L., Greggio, N., Tonini,
G. et al. (2006) Italian cross-sectional growth charts for
height, weight and BMI (2 to 20 yr). J. Endocrinol. Investig., 29,
581–593.

55. WHO/IDF (2006) Definition and Diagnosis of Diabetes Mellitus
and Intermediate Hyperglycaemia : Report of a WHO/IDF Consul-
tation. World Health Organization, Geneva.

56. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser,
M.E., Mägi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson,
S. and Kanoni, S. (2012) Large-scale association analyses
identify new loci influencing glycemic traits and provide
insight into the underlying biological pathways. Nat. Genet.,
44, 991.

57. R Core Team. (2021) R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing,
Vienna, Austria.

58. Belsky, D.W., Moffitt, T.E., Sugden, K., Williams, B., Houts, R.,
McCarthy, J. and Caspi, A. (2013) Development and evalu-
ation of a genetic risk score for obesity. Biodemography Soc.
Biol., 59, 85–100.


	Relationship between glucose homeostasis and obesity in early life---a study of Italian children and adolescents 
	Introduction
	Results
	Discussion
	Materials and Methods
	Supplementary Data
	Data availability
	Funding
	Contribution statement
	Duality of interest


