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Abstract 

We present a major update of the HOCOMOCO collection that provides DNA binding specificity patterns of 949 human transcription factors and 
720 mouse orthologs. To make this release, we performed motif discovery in peak sets that originated from 14 183 ChIP-Seq experiments and 
reads from 2554 HT-SELEX experiments yielding more than 400 thousand candidate motifs. The candidate motifs were annotated according to 
their similarity to known motifs and the hierarchy of DNA-binding domains of the respective transcription factors. Next, the motifs underwent 
human expert curation to stratify distinct motif subtypes and remo v e non-inf ormativ e patterns and common artifacts. Finally, the curated subset 
of 100 thousand motifs was supplied to the automated benchmarking to select the best-performing motifs for each transcription factor. The 
resulting HOCOMOCO v12 core collection contains 1443 verified position weight matrices, including distinct subtypes of DNA binding motifs 
for particular transcription factors. In addition to the core collection, HOCOMOCO v12 provides motif sets optimized for the recognition of binding 
sites in vivo and in vitro , and for annotation of regulatory sequence variants. HOCOMOCO is available at ht tps://hocomoco1 2.autosome.org and 
https://hocomoco.autosome.org . 
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Introduction 

Computational annotation of transcription factor binding
sites (TFBS) remains an essential pillar supporting the dome
of gene regulation studies. The most common context is the
recognition of individual TFBS in genome regulatory regions
( 1 ), e.g. as supportive evidence for transcription factor (TF)
target genes ( 2 ). Predicted TFBS can reveal the genomic lo-
cations and the structure of regulatory regions and thus pro-
vide information on the composition of transcriptional regu-
latory complexes ( 3 ,4 ). In synthetic biology, the information
on possible locations of TFBS is needed to create biologically
neutral spacers in designed CRISPR-Cas guide RNAs for con-
trolled transcription modulation of target genes ( 5 ). Finally,
TF binding motifs are widely used to interpret regulatory se-
quence variants within TFBS ( 6 ), including non-coding single-
nucleotide polymorphisms associated with predisposition to
hereditary syndromes ( 7–10 ) and somatic mutations occur-
ring in stem cells and cancer ( 11 ,12 ). 

Lots of advanced approaches to model and predict TFBS
using high-throughput data were presented in the past decade
( 13–18 ) yet the classic position weight matrices (PWMs)
( 19 ), also called the position-specific scoring matrices, re-
main the off-the-shelf solution that is widely applied in prac-
tice. More than ten years ago we introduced the HOCO-
MOCO collection of transcription factor binding models.
Since then, HOCOMOCO became one of the key resources
in the field along with CIS-BP ( 20 ) and JASPAR ( 21 ), and
powered multiple studies in human and mouse gene regu-
lation and epigenetics ( 22–25 ). However, the last release of
HOCOMOCO was dated 2018, and a recent accumulation
of high-throughput data and improvements in transcription
factor annotation demanded substantial upgrading of the col-
lection. It became both necessary and possible to cover more
transcription factors and alternative binding motif subtypes.
The wealth of data also made it possible to improve the motif
quality through human expert curation based upon the sig-
nificantly expanded compendium of studied TFs and the vol-
ume of available experimental information for each of the TFs.
Here we present HOCOMOCO v12, which was rebuilt from
scratch utilizing in vivo and in vitro high-throughput data on
TF binding obtained with ChIP-Seq and HT-SELEX, respec-
tively. By systematic reanalysis and careful curation, we as-
sembled an updated catalog of binding motifs for 949 human 

TFs and 720 mouse orthologs. The motifs were computation- 
ally benchmarked in different scenarios, including recognition 

of sites bound in vivo , in vitro , and detection of altered TF 

binding at regulatory single-nucleotide variants and polymor- 
phisms (rSNPs). 

Materials and methods 

HOCOMOCO transcription factors master list 

The first step of the HOCOMOCO reassembly was popu- 
lating the catalog of human and mouse transcription fac- 
tors. We have parsed, merged, and verified the gene-ID map- 
ping of the existing TFClass classification ( 26 ,27 ) available 
online ( https:// tfclass.bioinf.med.uni-goettingen.de/ , https:// 
genexplain.com/ tfclass/ huTF _ classification _ Classes.html ) for 
orthologous human and mouse TFs. The classification was 
extended by adding ten methyl-CpG-binding domain pro- 
teins and supplemented with external protein IDs. The re- 
sulting HOCOMOCO master list (see Supplementary Table 
ST1) contains 2681 entries describing 1104 human + mouse 
orthologous pairs and 473 human-only TFs. Additionally, we 
annotated the master list with the information from ( 28 ) high- 
lighting 1378 (human) and 921 (mouse) proteins with strong 
documented evidence of being the genuine DNA-binding tran- 
scription factors. 

Overview of the HOCOMOCO pipeline 

An overview of the pipeline used for constructing HOCO- 
MOCO is shown in Figure 1 . To construct this release, we 
utilized two major sources of high-throughput data on DNA- 
protein recognition in vitro and in vivo : peak calls from 

chromatin immunoprecipitation followed by deep sequencing 
(ChIP-Seq) and high-throughput systematic evolution of lig- 
ands by exponential enrichment (HT-SELEX). ChIP-Seq peaks 
were extracted from the GTRD database ( 29 ). HT-SELEX 

reads obtained in ( 30–32 ) were downloaded from the Eu- 
ropean Nucleotide Archive (ERP001824, ERP001826, PR- 
JEB14744, PRJEB9797). After preprocessing (see the details 
below), the resulting sequences were supplied to ChIPMunk 

motif discovery software ( 33 ,34 ), followed by (I) automated 
Gr aphical abstr act 

https://tfclass.bioinf.med.uni-goettingen.de/
https://genexplain.com/tfclass/huTF_classification_Classes.html
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Figure 1. An o v ervie w of the HOCOMOCO v12 pipeline. ChIP-Seq peaks from GTRD and HT-SELEX reads from ENA are preprocessed and supplied to 
motif disco v ery with ChIPMunk, f ollo w ed b y motif annotation with MACR O-APE using kno wn CIS-BP and H OCOMOCO v11 motifs as reference. T he 
final collection is assembled by human expert curation and automated benchmarking. 

annotation of resulting motifs by similarity with known mo- 
tifs present in CIS-BP ( 20 ) and HOCOMOCO v11 ( 35 ) using 
MACRO-APE ( 36 ) within the TFClass family and subfamily, 
(II) human expert curation, and (III) automated benchmark- 
ing. The benchmarking results were used to re-visit and im- 
prove curation of particular motif subtypes, and then assem- 
ble the final motif collection. 

Experimental data overview 

ChIP-Seq data. ChIP-Seq and ChIP-exo peak sets were ex- 
tracted from GTRD (mainly from ver. 20.06 and partly from 

ver. 21.12), see Supplementary Table ST2. GTRD provides 
peak calls from four different peak calling tools: macs2, gem, 
pics, sissrs ( 37–40 ). In total, the source data from the 14 183 

experiments covered 1022 human and 468 mouse TFs with 

more than 50 thousand peak sets, more than doubling the 
size of the ChIP-Seq data volume used for assembling HO- 
COMOCO v11. 

HT-SELEX data. We used the data from 1810 traditional 
HT-SELEX experiments: 546 experiments from Jolma et al., 
520 from Yang et al. and 744 from Yin et al. ( 30–32 ). In addi- 
tion, we considered the results of 744 methyl-CpG HT-SELEX 

experiments of Yin et al . The comprehensive list of the datasets 
is provided in the Supplementary Table ST3. 

Motif discovery 

Motif discovery from ChIP-seq peaks 
Data preparation. For each peak set, we prepared subsets of 
the top 1000 peaks ranked (a) by the peak height and (b) if 
provided by a particular peak calling tool, peak statistical sig- 
nificance. Peak regions were used ‘as is’ except gem, for which 

301 bp regions around peak summits were taken for analysis. 

Motif discovery. For each peak subset, we generated fasta 
files using bedtools getfasta and ran ChIPMunk ( 33 ) 
twice searching for short single-box motifs and longer mo- 
tifs of arbitrary structure. From the ChIPMunk output, we 
excluded motifs from the consequent analysis if constructed 

from less than 50 words or covering < 25% of the peak set. 
In total, > 300 thousand ChIP-Seq motifs entered the curation 

stage. 

Motif discovery from HT-SELEX reads 
Data preparation. Reads from later cycles of HT-SELEX are 
likely to resemble the consensus better . However , in some 
experiments, the later cycles are over-enriched with identi- 
cal consensus reads, while extra information might be avail- 
able in the earlier cycles. Thus, two read sets were defined 

for each HT-SELEX experiment: full (all experiment cycles 
combined) and late cycles only (starting from the third cy- 
cle). In each case, the reads from the selected cycles were 
pooled and the sequences were ranked by 5-mer enrichment 
against the dinucleotide-shuffled background. The ‘single- 
ton’ reads that were found only once in a pooled dataset 
were removed. To allow the motif occurrences to partially 
overhang the constant HT-SELEX adapters, each sequence 
was extended by 5 

′ -NNX 1 - and -X 2 NN’-3 

′ , where X 1,2 

are the constant nucleotides of experiment-specific adapters 
flanking the HT-SELEX random inserts. For each read set, 
we generated up to four sequence sets using top 1000, 
2500, 5000 and 10 000 reads, or all available unique 
reads if there were not enough available. In total, up to 

eight sequence sets were produced from a single HT-SELEX 

experiment. 
Motif discovery. As HT-SELEX sequences are 10–100 times 

shorter than those from ChIP-Seq, it was computationally fea- 
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sible to use the dinucleotide version of ChIPMunk ( 34 ) to bet- 
ter account for the background composition, although in the 
end, we have produced mononucleotide PWMs from the re- 
sulting sequence alignments. In total, nearly 20 thousand mo- 
tifs from HT-SELEX entered the curation stage. 

Please refer to the Supplementary Table ST4 for exact ChIP- 
Munk command-line parameters. 

Motif annotation and human expert curation 

To facilitate human curation, the motifs were annotated with 

known motifs of the same TF, TFClass subfamily, and family, 
using the MACRO-APE similarity comparison tool ( 36 ) and 

HOCOMOCO v11 ( 35 ) along with CIS-BP ( 20 ) as the ref- 
erence motif collections. CIS-BP served as a source of diverse 
putative motifs when checking the motif similarity at the TF 

family level. In turn, HOCOMOCO v11 was used as a direct 
primer for curation to pre-sort and group the candidate mo- 
tifs based on similarity to previously annotated subtypes, if 
any. As in a previous large-scale benchmarking study ( 41 ) the 
motif performance was not affected by the motif information 

content, the latter was not used as a curation criterion. 

Overview of the curation workflow 

The motif logos of the annotated motifs of each TF were inde- 
pendently inspected by two junior curators who decided upon 

grouping motifs into known subtypes, introducing new sub- 
types, and discarding non-relevant patterns or common ar- 
tifacts, such as low-complexity poly-A patterns or ETS mo- 
tifs commonly found in ChIP-Seq peaks of other TF families. 
The curation decision was guided by motif annotation and TF 

information from HOCOMOCO v11, CIS-BP and JASPAR, 
taking into account known motifs of the TFClass structural 
family and subfamily . Particularly , a motif subtype was intro- 
duced when similar alternative motifs were discovered recur- 
rently in multiple ChIP-Seq peak sets, or in both ChIP-Seq and 

HT-SELEX, or for related TFs of the same family. The curation 

results from junior curators were assessed and further refined 

by two senior curators, and the disagreements were resolved 

on a case-by-case basis. As a general rule, vague DNA patterns 
(e.g. unstructured low-complexity poly-T tracts) found in a 
single experiment with missing external confirmation (con- 
sidering CIS-BP, JASPAR, or publications which yielded the 
source data) were discarded, while well-defined motifs (e.g. 
having high information content core regions with less con- 
served flanking regions) and motifs resembling the known pat- 
terns of related TFs were kept. In this setting, Zinc-finger TFs 
proved to be the most difficult case due to their affinity to ge- 
nomic repeats ( 42 ) making it non-trivial to distinguish genuine 
binding sites from common artifactual signals such as various 
parts of ALU repeats. In the end, many of Zinc-finger TFs’ mo- 
tifs received the C quality due to being found only in a single 
experiment. 

Curating distinct motif subtypes 
HOCOMOCO v11 already contained distinct motif subtypes 
for many TFs. In this release, we took a step further and sys- 
tematically considered motif subtypes merging ChIP-Seq- and 

HT-SELEX-derived subtypes, when possible. For many TFs, 
the motif subtypes were observed only with ChIP-Seq, e.g. 
for different TF heterodimers binding composite elements, or 
only with HT-SELEX, e.g. for various combinations of ho- 
modimers binding palindromic or tandem repeat sequences. 

Those cases were kept separately by construction. Of note, we 
did not try to decouple individual binding sites within com- 
posite elements found in ChIP-Seq, and the respective motifs 
were linked with the particular TFs for which the experimen- 
tal data were produced. 

The CpG methylation-related motif subtypes represented 

a particularly difficult curation case. On the one hand, in 

the genomic ChIP-Seq, such motifs usually carry a mix of 
CpG / TpG possibly arising from several mingled sources: TF- 
specific binding preference for TGs, CGs, or methylated CGs; 
varying methylation status of the bound regions; and CpG 

mutation hotspots. On the other hand, the preference for CpG 

over TpG and vice versa can be interpreted in HT-SELEX if re- 
sults from both traditional HT-SELEX and methyl-HT-SELEX 

(with methylated oligonucleotides) are available. Thus, to 

keep the HOCOMOCO subtypes comprehensive and consis- 
tent, the curators introduced separate CpG and / or TpG mo- 
tif subtypes when a preference for one or both variants was 
detected in HT -SELEX / methyl-HT -SELEX experiments. The 
motifs from HT-SELEX and ChIP-Seq were grouped into a 
single subtype, when possible, but the information regarding 
the type of the HT-SELEX experiments contributing to the 
subtype was kept explicitly. 

Motif quality ratings and subcollections 

A popular HOCOMOCO feature is the subjective motif qual- 
ity or reliability on the A-B-C-D scale where A denotes the 
most reliable motifs. In the HOCOMOCO v12 core collec- 
tion, the motif quality ratings were assigned as follows: A 

for motifs and subtypes found both in vitro and in vivo , B 

for those reproducible between individual experiments but in 

vitro or in vivo only, and C for all other remaining cases that 
passed the curation stage. Adapting to the growth of the data 
and HOCOMOCO usage scenarios, we have excluded from 

this release suspicious motifs that could have a D quality rat- 
ing in HOCOMOCO v11. In the v12 core collection, D qual- 
ity (unclear reproducibility) was assigned to a few motifs be- 
longing to the motif subtypes missed by the v12 pipeline and 

directly inherited from v11. 
In addition to the core collection, we have introduced three 

subcollections specialized for TFBS prediction in vivo (‘v12- 
invivo’), in vitro (‘v12-invitro’), and for rSNP annotation 

(‘v12-rsnp’), which were based on the benchmarking results 
from individual data types (see below). In these subcollections, 
the D rating was assigned to the ‘untested’ motifs of TFs lack- 
ing the respective experimental data to perform the specific 
benchmark. 

Motif benchmarking 

To assess the reliability of motif models and select the best- 
performing model for each motif subtype, we used three 
sets of computational benchmarks assessing the models’ per- 
formance in three scenarios: recognizing (I) TFBS bound in 

vivo using ChIP-Seq data, (II) TFBS bound in vitro using 
HT-SELEX data; (III) regulatory SNPs altering TF binding 
in vivo (allele-specific binding in ChIP-Seq ( 8 )) and in vitro 

(SNP-SELEX ( 43 )). Several performance metrics were com- 
puted in each category followed by log-rank-sum aggrega- 
tion across obtained motif ranks for each performance met- 
ric, each benchmark, and each test dataset to obtain the 
final rank of each of the tested motifs for each TF in each 

of the three benchmarking categories. The top-ranking mo- 
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tifs for each TF formed the three specialized motif col- 
lections: HOCOMOCO-invivo (benchmarked on ChIP-Seq), 
HOCOMOCO-invitro (benchmarked on HT-SELEX), and 

HOCOMOCO-rSNP. On top of that, another round of log- 
rank-sum aggregation was performed to obtain the over- 
all best motifs forming the unified HOCOMOCO v12 core 
collection. 

ChIP-seq benchmarking 
In HOCOMOCO v11 we used independent peak subsets for 
motif discovery and benchmarking. However, for transcrip- 
tion factors with smaller peak sets this approach reduced the 
sequence space for motif discovery. In this release, we did 

not explicitly separate the training data used for motif dis- 
covery from the test data for a particular experiment, which 

introduced some information leakage between model train- 
ing (motif discovery) and testing (benchmarking). However, 
(I) for the most studied TFs there were multiple independent 
experiments to rely on cross-validation across experiments, 
(II) for many TFs there were both ChIP-Seq and HT-SELEX 

data available for testing, (III) for a single experiment we used 

multiple dependent but non-identical peak sets from alterna- 
tive peak callers, (IV) the dataset of origin was rarely yielding 
the top-ranked motif in ( 41 ) and (V) for poorly studied TFs 
with a single peak set the performance ratings have limited 

value in any case. 
To reduce the risk of introducing a technical bias in the fi- 

nal collection related to a particular motif performance bench- 
marking protocol, for HOCOMOCO v12 we used 3 different 
ChIP-Seq benchmarks. 

1. The area under the receiver operating characteristic (au- 
ROC) using the Ambrosini et al. ( 41 ) implementation 

of the Orenstein-Shamir protocol ( 44 ) with the follow- 
ing modifications: up to top 1000 peaks were used 

as ‘positives’, both downstream and upstream regions 
were included in the negative set. In addition to au- 
ROC, we computed the area under the precision-recall 
curve (auPRC). For each peak set the benchmark was 
run twice: the top peaks were selected either by signal 
value (e.g. peak height) or by statistical significance (e.g. 
P-value), as reported by the peak calling tools. 

2. Asymptotic pseudo-au-logROC as in HOCOMOCO 

v11 ( 35 ) and pseudo-auROC as in HOCOMOCO v10 

( 45 ). The benchmark identifies the best PWM hits in 301 

bp genomic windows (‘positives’) centered at the peak 

summits and in random sequences of the same lengths 
(‘negatives’) following the dinucleotide composition of 
the positive sequence set. Up to 1000 top peaks from the 
test data were used, and each benchmark was run twice 
using the top peaks yielded by score- or significance- 
based sorting, as above. 

3. CentriMo -log- E -value of motif centrality ( 46 ) measur- 
ing how motif hits are located relative to the peak sum- 
mits. Up to 1000 top peaks from test data were used, 
and each benchmark was run twice using top peaks 
yielded by score- or significance-based sorting, as above. 

Only peak sets yielding at least one motif that was approved 

and assigned to one of the motif subtypes during the curation 

stage were used in benchmarking. In the final motif rankings, 
for each motif subtype, we used only peak sets (I) compris- 
ing ≥100 peaks and (II) for which at least one of the tested 

motifs reached auROC ≥ 0.6. Subtypes for which no motifs 

reached auROC ≥ 0.6 were considered not applicable to the 
ChIP-Seq data and were excluded from the ‘v12-invivo’ sub- 
collection. 

Globally, ChIP-Seq benchmark had increased complexity 
relative to the number of datasets and motifs, thus the most 
studied TFs with the largest number of ChIP-Seq experiments 
were bottlenecking the computations. To reduce the compu- 
tational cost, for the top five of such TFs (CTCF, ESR1, AR, 
SPI1, FOXA1) we ran the pseudo-auROC benchmark on a 
randomly selected subset of around 500 datasets. The results 
were used to pre-rank the motifs and select those ranking from 

1 to 250, which were then used in the full-scale benchmarking. 

HT-SELEX benchmarking 
For HT-SELEX, we used the strategy described in ( 41 ). The 
reads from different cycles (for HT-SELEX) were pooled and 

a maximum of 500 000 randomly sampled unique reads per 
dataset were used for benchmarking: 10%, 25% or 50% of 
top-scoring reads were designated as ‘positives’ for each tested 

PWM. In addition to auROC we also computed auPRC. In 

the final motif rankings, for each motif subtype, we used only 
benchmarks where at least one of the tested motifs reached 

auROC ≥0.6. The subtypes for which no motifs reached au- 
ROC ≥0.6 were considered not applicable to the HT-SELEX 

data and were excluded from the ‘v12-invitro’ subcollection. 

Benchmarking with regulatory SNPs 
With rSNP benchmarking we aimed to identify the motifs suit- 
able for assessing transcription factor binding altered by reg- 
ulatory single-nucleotide variants. To this end, we employed 

two data sets: (I) artificial rSNP-carrying oligonucleotides as- 
sessed with SNP-SELEX for differential TF binding ( 43 ) and 

(II) sites of allele-specific TF binding in vivo from ADASTRA 

( 8 ). The overview of the benchmarking data is available in 

Supplementary Table ST5. 
Assessing rSNP prediction with SNP-SELEX data. We fol- 

lowed the benchmarking protocol described in ( 47 ) using the 
SNP-SELEX data obtained in two batches for 270 and 487 

TFs, respectively . Briefly , as in ( 43 ), for each TF we distributed 

TF-bound SNPs between the ‘positive’ set of rSNPs affecting 
TF binding and ‘negative’ variants. Next, we computed au- 
ROC and auPRC of binary classification using the absolute 
log-ratio of PWM hit P -values for the reference and alternative 
alleles as the predicted classification score. Additionally, for 
the positives, we used the P -value log-ratio to compute Kendal 
τb and Pearson ρ against the log- P -value reported by SNP- 
SELEX that reflects the experimentally determined variant- 
dependent differential binding. In the final evaluation, we in- 
cluded only the test sets with at least ten positive class labels 
and only the TFs and batch combinations where at least one 
model reached auROC ≥ 0.6 with both τb > 0 and ρ > 0. 
The subtypes for which no motifs fulfilled those criteria were 
considered not applicable to the SNP-SELEX data. 

Assessing rSNP prediction with ADASTRA allele-specific 
binding 

Compared to SNP-SELEX, the data on allele-specific bind- 
ing in vivo lacks explicit true negatives and does not nec- 
essarily reflect direct TF binding, so the true positives, in 

fact, are mixed with neutral variants. Thus, for each TF, we 
used HOCOMOCO v11 motif (this annotation was already 
present in ADASTRA) as a starting filter for selecting can- 
didate SNPs directly overlapping motif occurrences (PWM 
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P -value < 0.0005). Of those, we selected the ASB ‘positive’ 
set (minimal FDR < 0.05 for ChIP-Seq allelic bias towards 
reference or alternative allele) and the ‘neutral’ set (maximal 
FDR > 0.5). For the positive set, we computed Kendal τb and 

Pearson ρ comparing the log-ratio of PWM P -values against 
the ASB -log-FDR. Additionally, as in ADASTRA ( 8 ), we as- 
sessed the concordance of the allelic preferences between the 
predicted (PWM P -value log-ratio, log- P Alt versus log- P Ref ) 
and observed (ASB FDR Alt versus ASB FDR Ref ) difference, and 

applied the Fisher’s exact test to the 2 × 2 contingency table 
built by counting separately concordant and discordant SNPs 
in the positive and the neutral ASB subsets. Only TFs with 

at least 10 ‘positive’ rSNPs and for which at least one model 
reached Fisher’s P -value < 0.05 with both τb > 0 and ρ > 

0 were considered in the final evaluation. The subtypes for 
which no motifs fulfilled those criteria were considered not 
applicable to the ASB in vivo data. 

In the end, the subtypes inapplicable to both SNP-SELEX 

and ASB were discarded from the ‘v12-rsnp’ subcollections, 
and the subtypes inapplicable to any of the available data type 
were excluded from the core collection. 

Results and discussion 

Here we present HOCOMOCO v12, the major update of the 
curated database of human and mouse transcription factor 
binding models. HOCOMOCO was constructed by motif dis- 
covery in peak sets from 14 183 ChIP-Seq experiments and 

sequenced reads from 2554 HT-SELEX experiments yielding 
> 400 thousand candidate motifs in total. Of those, around 

100 thousand motifs of 949 human TFs were approved, as- 
signed to particular motif subtypes, and supplied to the au- 
tomated benchmarking pipeline. In result, the HOCOMOCO 

v12 core collection contains 1443 motifs and covers 949 hu- 
man TFs, 720 of which have mouse orthologs and 229 are 
human-exclusive. This is 40% and 60% more TFs than in v11 

for the human and mouse, respectively. 241 motifs of 1443 

were fully concordant between ChIP-Seq and HT-SELEX for 
the respective TFs and received the A quality rating, while 819 

motifs were concordant between at least two experiments of 
the same type and received the B quality. Overall, the database 
update significantly improves the coverage of the motif dic- 
tionary across transcription factor families, particularly, with 

a major increase in binding motifs for TFs with zinc-finger 
DNA-binding domains (Figure 2 A, B; see also the interactive 
version of the Figure 2 B on the HOCOMOCO website). In 

addition to the core collection, HOCOMOCO v12 provides 
three extra subcollections fine-tuned for genomic TFBS pre- 
diction (v12-invivo), locating sites preferably bound in vitro 

(v12-invitro), and for identifying TFs with altered binding at 
rSNPs (v12-rsnp). 

Due to the increased data volume and improved curation 

pipeline, in HOCOMOCO v12 we have eradicated most of 
the unreliable models of D quality which constituted more 
than a third of the HOCOMOCO v11 full collection. In the 
core collection, there are now only three D quality motifs in- 
herited from v11 which were approved by curators but not 
reproduced directly at the motif discovery step of v12. Also, 
the D quality motifs remain in dedicated subcollections aimed 

at particular applications of motif libraries (v12-invivo, v12- 
invitro, v12-rSNP), where motifs untested at the respective tar- 
get data (HT-SELEX, ChIP-Seq, or rSNPs) are included but ex- 
plicitly marked by D-s. The v12 core collection includes 380 

models of C quality with support from only a single exper- 
iment, through expert curation we ensured that these mod- 
els are consistent either with the DNA binding patterns of 
the respective TF structural family or known patterns present 
in other motif collections. Quantitatively, motifs produced by 
the updated pipeline are better scoring across a diverse set of 
new benchmarks by design. In the v12 core collection only 
11 TFs have motifs inherited from v11, which is probably re- 
lated to the much larger volume of new data and more rig- 
orous benchmarking setup of the current update. Given the 
possibly confusing diversity of quality ratings, subtypes, and 

subcollections, we have designed a flowchart to guide the user 
in selecting a proper motif collection and a suitable subset of 
motifs (Supplementary Figure SF1). 

With multiple other motif collections covering human and 

mouse TFs, we consider HOCOMOCO as having its dis- 
tinctive value for several reasons. First, all motifs were de- 
rived by the same motif discovery tool in the same pipeline, 
making them uniform and comparable across the board. Sec- 
ond, all motifs and multiple motif subtypes were manually 
curated to reduce redundancy and discard ambiguous pat- 
terns and shared artifactual signals. Third, in this version, we 
provide not only the complete core collection but specifically 
optimized subsets suitable for different practical needs, from 

genomic TFBS prediction to designing high-affinity artificial 
oligonucleotides and regulatory SNP annotation. 

Compared to v11, in this release, we do not provide din- 
ucleotide models. Producing and testing these models de- 
manded extra computational expenses for motif discovery due 
to dramatically increased data volume, and required major 
changes in the benchmarking protocols, which are not directly 
applicable to models other than PWMs. Thus, at the current 
stage, dinucleotide models will remain available in HOCO- 
MOCO v11, while HOCOMOCO v12 can provide a better 
baseline to derive and test not only dinucleotide PWMs but 
also more complex models. 

The starting ChIP-Seq and HT-SELEX data covered 1022 

and 609 human TFs, respectively, but in the end, not all of 
them are listed in the v12 collection. Unfortunately, our setup 

does not allow us to state whether these failures have arisen 

due to the TF itself having limited DNA-binding specificity or 
technical issues with the original data, data preprocessing, or 
motif discovery. Data from other experimental technologies 
may fill this gap in the future. 

In this release, we are providing a joint motif collection cov- 
ering human TFs and their mouse orthologs with a shared set 
of motifs, motivated by the fact that the TF binding specifici- 
ties are conserved between human and mouse ( 30 ) and for 
some TFs extend largely even to the level of the fruit fly ( 48 ). 
In HOCOMOCO v11 we cross-validated the motifs between 

human and mouse and realized that high-performing motifs 
are performing well across datasets, regardless of the species 
on which the motif discovery was conducted. Further, in the 
SNP-SELEX benchmark ( 47 ), we observed many cases, where 
a motif obtained for an ortholog TF of other species out- 
performed the motif obtained directly from human data. Re- 
garding particular subtypes, there were examples of human- 
and mouse-exclusive motif subtypes spotted at the curation 

stage. Yet, in general, the respective TFs were profiled in dif- 
ferent cell types and with different antibodies, making it hard 

to attribute the differences specifically to species and not to 

technical features of experiments. Thus, in this release, we kept 
all alternative motifs as species-agnostic motif subtypes, but 
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Figure 2. The coverage of different TF classes by HOCOMOCO v12 motifs. (A) Improvements in the coverage of transcription factors by HOCOMOCO 

motifs across the largest DNA-binding domain superclasses, HOCOMOCO from v9 to v12. The pie chart slices denote the contribution of superclasses 
to the total set of TFs, and the colored parts of the slices denote the fraction of TFs with motifs. The total number of TFs and the number of TFs with 
HOCOMOCO v12 motifs in each superclass are given in the legend in brackets. (B) Relative coverage of different TF classes by HOCOMOCO v12 
motifs. Blue: total number of TFs in a superclass or a class, orange: TFs with motifs. 
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Figure 3. Illustrative examples of motif subtypes included in 
HOCOMOCO v12. The plots show motif logos, the TF gene symbols are 
labeled on the right with UniProt entry name prefixes in brackets, if 
different from the gene symbol. (A) The AR palindromic motif (top), and 
its shorter version making a composite element with FOXA1 (bottom). 
(B) CLOCK motifs derived from ChIP-Seq (top) and methyl-HT-SELEX 
(bottom). The methyl-HT-SELEX motif prefers TG instead of CG in the 
central position, which is f ollo w ed b y [C / T]G instead of pure TG in 
ChIP-Seq. (C) CEBPB motifs derived from HT-SELEX (top) and ChIP-Seq 
(bottom). (D) ZNF768 motif subtypes representing o v erlapping regions of 
the same repetitive element. (E) NFATC2 multiple motif subtypes. 

explicitly annotated subtypes coming exclusively from human 

or mouse data. 

On redundancy of motif subtypes 

The selection of top-performing motifs from multiple alter- 
natives has been guided by formal criteria of benchmarking 
measures, which is a major feature of the HOCOMOCO col- 
lection. However, the presence of distinct motif subtypes is 
relying solely on human expert curation. The original idea of 
including subtypes in HOCOMOCO was to attribute individ- 
ual motifs to different modes of binding, e.g. distinguish AR 

palindromic binding sites from AR -FO XA1 (Figure 3 A) com- 
posite elements. We did not introduce motif subtypes auto- 
matically via TF-level motif clustering ( 49 ) as many interme- 
diate motifs are blurring the identity of clusters and thus com- 
plicating the selection of universal similarity thresholds across 
the whole range of TFs. Further, this release was designed to 

be as inclusive as possible and we explicitly included subtypes 
even with minor motif alterations, if biologically substanti- 
ated, e.g. if they arise from different experimental layouts 
(methyl- vs normal HT-SELEX), different modes of binding 
(e.g. tandem binding sites in HT-SELEX), or protein-protein 

complexes (composite elements in ChIP-Seq). Notably, as ex- 
pected, ChIP-Seq-derived subtypes describing composite ele- 
ments perform strongly in ChIP-Seq-based benchmarks. Yet, 
their relative ranks in the core collection vary across TFs, in 

particular, depending on the composition of the benchmark- 
ing data. For example, OCT4-SOX2 composite element is the 
major first-ranked motif subtype for OCT4 but a secondary 
motif subtype for SOX2. 

A typical example of a relevant but small difference be- 
tween the subtypes is the CG / TG substitution mostly related 

to the methylated CpGs. The changeable position arises from 

two linked but distinct scenarios: (I) TF preferring or avoid- 
ing mCpG within the binding sites revealed by methyl-HT- 
SELEX, and (II) [C > T]G mutation hotspots, leading to deple- 
tion of CG pairs in genomic sites and thus affecting ChIP-Seq- 
derived motifs. The first case is illustrated e.g. by the CLOCK 

motif subtypes found in HT-SELEX data (Figure 3 B). The sec- 
ond case is clearly exhibited for C / EBP motifs (Figure 3 C), as 
C / EBP TFs bind the frequent T-G mismatches at CpGs within 

its binding sites with increased affinity and by doing so impair 
base excision repair ( 11 ). 

A complicated case comes with the repeat-binding zinc- 
finger proteins, for which ChIP-Seq motif discovery often fails 
to capture the exact location of the binding site within a longer 
repetitive element, thus the alternative subtypes do not ex- 
plain any different modes of binding but rather belong to dif- 
ferent parts of the longer consensus, see ZNF768 motifs in 

Figure 3 D. 
The diversity of the annotated subtypes in some cases might 

be excessive, e.g. there are 5 motif subtypes for NFATC2 (Fig- 
ure 3 E), including methylation-specific subtypes and a com- 
posite element found in ChIP-Seq. Yet, we nonetheless in- 
cluded all recurrently found motif variants as they could have 
different practical applications. For example, longer motifs 
from ChIP-Seq likely capture extended sequence context or 
cofactor binding patterns and thus are specifically useful for 
genomic TFBS recognition. Shorter single box motifs might 
be inefficient in predicting the complete binding sites but use- 
ful to decouple TFBS composite elements. Finally, tandem or 
palindromic motifs from HT-SELEX often represent optimally 
spaced binding sites with high-affinity and might be suitable 
to optimize oligonucleotides for binding affinity in vitro . 

Of note, the motif subtypes in HOCOMOCO v12 are or- 
dered (0, 1, …) according to their performance in benchmark- 
ing, thus in the case a user requires a single motif per TF, the 
first subtype (0) motifs can be safely selected as TF represen- 
tatives. 

Concluding remarks 

Summing up, this release brings HOCOMOCO close to a 
thousand TFs with reliably described binding specificities. In 

v12 we have eradicated the legacy non-benchmarked models 
and models built from low-throughput data, significantly ex- 
panded the benchmarking setup, and performed rigorous an- 
notation of motif subtypes. As in the previous release, HOCO- 
MOCO update is accompanied by renewed MoLoTool (motif 
location toolbox), an interactive JavaScript web application 

for visualizing motif hits in user-supplied sequences. The on- 
line version of our tool for rSNP analysis, PERFECTOS-APE, 
was also updated to use v12-rsnp collection by default. 

We believe HOCOMOCO v12 will serve as a solid knowl- 
edge base empowering molecular biology and genetics of gene 
regulation and also establish the ground for reaching a com- 
plete and reliable collection of human and mouse TF motifs 
in the future. 

Data availability 

The HOCOMOCO v12 database is freely available at https:// 
hocomoco12.autosome.org and https://hocomoco.autosome. 
org . 

The HOCOMOCO v12 motif sets and bench- 
marking results are available at ZENODO 

[doi:10.5281 / zenodo.10012937]. 

https://hocomoco12.autosome.org
https://hocomoco.autosome.org
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The implementation of ChIP-Seq and HT-SELEX bench- 
marking protocols is available at GitHub: https://github.com/ 
autosome-ru/motif _ benchmarks . 

The implementation of the HT-SELEX k-mer enrich- 
ment estimation is available at GitHub: https://github.com/ 
autosome- ru/kmer- motif- enrichment . 

The implementation of rSNP-based benchmarking proto- 
cols is available at GitHub: https:// github.com/ autosome-ru/ 
hocomoco _ rsnp _ benchmarks . 

The online-only supplementary data are available at the 
NAR website. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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