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Background: Protein truncating variants in ATM, BRCAT, BRCA2, CHEK2, and PALB2 are associated with increased
breast cancer risk, but risks associated with missense variants in these genes are uncertain.

Methods: We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the
Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to ana-
lyze rare missense variants in ATM (1146 training variants), BRCAT (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We
evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein
domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was

assumed to be risk-associated.

Results: The most predictive in silico algorithms were Helix (BRCAT, BRCA2 and CHEK2) and CADD (ATM). Increased
risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCAT (RING and BRCT
domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%,
respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For
CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower
risk (OR 1.75, 95% Cl (1.47-2.08)) than CHEK?2 protein truncating variants. There was little evidence for an association
with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set.

Conclusions: These results will inform risk prediction models and the selection of candidate variants for functional
assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.

Keywords: Breast cancer, Genetic epidemiology, Risk prediction, Missense variants

Background

Genetic testing for cancer susceptibility is now part of
mainstream clinical practice. For breast cancer suscep-
tibility, genetic testing generally focuses on high-risk
genes, notably BRCAI, BRCA2, PALB2, and TP53, but
testing of larger panels that include so-called “moderate-
risk” genes is being increasingly offered [1]. While the
evidence that many of these genes are risk associated is
clear, for most this evidence is based on carrying a pro-
tein truncating variant (PTV). Besides PTVs, genetic
testing also identifies missense variants for which the
impact on protein function and associated cancer risk is
generally unknown (“variants of uncertain significance”
(VUS)), resulting in a major problem for genetic counsel-
ling. Some missense variants have been shown to confer
risk [2, 3] with risk estimates comparable to PTVs, and it
is possible that missense variants contribute substantially
to risk [4, 5], at least in some genes. However, defining
the set of missense variants in each gene that may con-
fer risk, and their associated risk estimates, presents an
ongoing problem.

Resolving this problem is complex as most variants are
individually very rare, so the evidence must be based on
combining data across multiple variants in a statistical
model. To this end, efforts have been made to develop
statistical algorithms that score missense variants accord-
ing to in silico features that may predict pathogenicity.

Here, we have compared the usefulness of five in silico
algorithms in predicting breast cancer risk associated
with missense variants using sequenced germline DNA
from more than 59,000 cases and 53,000 controls from
studies in the Breast Cancer Association Consortium
(BCAC) [6] participating in the BRIDGES project [7]. We
used the most predictive in silico algorithm to estimate
the risks of breast cancer associated with subsets of rare
missense variants, defined by categories of the in silico
score, in ATM, BRCAI, BRCA2, CHEK2, and PALB2.
These predictions were then validated using an inde-
pendent dataset.

Methods

Subjects

We included data from female breast cancer patients
(cases) and unaffected controls from 44 studies par-
ticipating in the BRIDGES project, as previously
documented [7]. These studies are a subset of studies par-
ticipating in the Breast Cancer Association Consortium
(BCAC) for which targeted sequencing was performed
using the BRIDGES panel (see below). Details of the par-
ticipating studies, including the enrollment of cases and
controls and sample sizes, are given in Additional File
1: Tables S1 and S2. Of these, 30 were population-based
or hospital-based studies (hereafter: population studies)
including cases and controls sampled independently of
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family history. A further 14 studies oversampled cases
with a family history of breast cancer (hereafter: familial
studies). All studies were approved by the relevant ethical
review boards and used appropriate consent procedures.
Five duplicated samples were identified and removed.
After quality control procedures (see below), 53,165 con-
trols and 59,639 cases with an invasive (53,838; 90.3%) or
in situ (4,153; 7.0%) tumor, or tumor of unknown inva-
siveness (1648; 2.7%), were included in the analyses. Of
these, 50,414 controls and 48,230 cases were from popu-
lation studies.

Laboratory methods, variant calling, and classification

The BRIDGES project performed targeted sequencing
on a panel of 34 genes [7]. Of these five (ATM, BRCAI,
BRCA2, CHEK2, PALB2) were chosen for further analy-
sis and presented here. These five genes, where the evi-
dence for association with breast cancer risk is strongest,
are most relevant to risk prediction and included in the
current version of the BOADICEA/CanRisk risk pre-
diction tool [8]. Details of library preparation, sequenc-
ing, variant calling, quality control procedures, and
variant classification has been documented previously
[7]. Missense variants in the entire gene were identified
using the Ensembl Variant Effect Predictor (VEP; ver-
sion 101.0) [9]. Rare variants for in silico analysis were
defined as those with allele frequency<0.1% (calculated
as previously described [7]); in addition, variants with
frequency<5% were retained for a frequency-based
analysis. Carriers of missense variants predicted to affect
RNA splicing, according to the MaxEntScan tool [10]
and SpliceAl scores [11], were removed (see Additional
File 2: Table S3). Variants were annotated for functional
protein domain location, defined according to pub-
lished literature, the UniProt Knowledgebase [12], and
for BRCA1 and BRCAZ2, the ENIGMA BRCA1/2 expert
panel guidelines [13] (see Additional File 1: Table S4).
Variants were also classified for disease pathogenicity
assertion in ClinVar [14] with a filter for no conflicting
interpretations; for BRCAI and BRCA2, variants were
also reviewed against the ENIGMA BRCAI/2 expert
panel guidelines. The ENIGMA terminology report [15]
reserves use of the word “pathogenic” to describe vari-
ants associated with at least a twofold cancer risk; how-
ever, for the purpose of this article, we describe any
variant associated with risk as pathogenic.

Variants were scored using five in silico prediction
algorithms: Align-GVGD [16], Combined Annota-
tion Dependent Depletion (CADD; version 1.4) [17],
Rare Exome Variant Ensemble Learner (REVEL) [18],
BayesDel (without allele frequency; version 1) [19], and
Helix (version 4.2.0) [20]. The first four are widely used
for variant classification in cancer susceptibility genes.
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Align-GVGD classifies variants according to the level of
cross-species conservation observed for a single missense
substitution while considering the biophysical character-
istics of the amino acids. CADD, BayesDel, and REVEL
are ensemble methods that integrate several different
annotations, including conservation metrics, regulatory
information, transcript information, and protein-level
scores, into a single score of deleteriousness. Helix com-
bines structural, alignment, and gene data with a strict
training regime where circularity is actively avoided to
produce a variant score and certainty estimate. All vari-
ants were scored using default software settings. For
Align-GVGD, the sequence alignment with the deepest
phylogeny level was used. Variants in BRCAI and BRCA2
were also annotated with the predictions of Hart et al.
[21], who developed two BRCA-specific in silico algo-
rithms (Random Forest (RF) and Naive Voting Method
(NVM)) to classify missense variants as functionally
damaging or neutral. In addition, BRCAI variants were
annotated using the prediction of loss-of-function made
by the Saturation Genome Editing (SGE) experiments
of Findlay et al. [22], which involved a comprehensive
functional assessment of missense variants lying within
the functional domain coding regions of BRCA1. BRCA2
variants were annotated using homology-directed DNA
repair (HDR) assay scores and predictions of pathogenic-
ity from Richardson et al. [23]. For PALB2, variants were
annotated with five different assay scores measuring
HDR activity, PARPi sensitivity, and homologous recom-
bination (HR) efficiency from the functional screening
studies of Boonen et al. [24], Rodrigue et al. [25] and
Wiltshire et al. [26].

Statistical analysis

The dataset was split into a training (80% of individuals)
and a validation (20%) set. Samples for the validation set
were selected randomly from population studies of cases
unselected for family history of breast cancer and con-
trols, in countries contributing a total of >5000 samples
(Denmark, Germany, Singapore (Chinese), Sweden, UK,
USA). All remaining samples were included in the train-
ing set. The training set included 37,211 cases from pop-
ulation studies, 11,409 cases from familial studies, and
42,334 controls. Of these, 3818 individuals were carriers
of PTVs in one or more of the five genes under consid-
eration and were excluded from all analyses except the
mixture models (see below). The validation set included
11,019 cases and 10,831 controls from population stud-
ies and did not include any carriers of PTVs. Oversam-
pling of cases with a family history increases power but
leads to biased effect sizes, so we chose this approach
to maximize the power to discriminate between models
in the training set, which could then be refit and tested
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on a dataset unselected for family history. All analyses
were adjusted for country as a covariate; in addition, for
Malaysia and Singapore, the three distinct ethnic groups
(Chinese, Indian, Malay) were treated as different strata,
and the UK was treated as three strata (SEARCH from
East Anglia, GENSCOT from Scotland, and PROCAS
and FHRISK from north-west England).

Training dataset analysis

An analysis flow diagram is presented in Fig. S1 (see
Additional File 1). Analyses were performed in R ver-
sion 4.0.3 (R: A Language and Environment for Statis-
tical Computing; http://www.r-project.org). We first
used logistic regression (LR) to explore which of the five
in silico scores (Align-GVGD, BayesDel, CADD, Helix,
and REVEL—all analyzed as continuous variables) were
most strongly associated with risk of breast cancer. In
addition, to assess the utility of gene-specific in silico
tools, we analyzed the Hart et al. RF and NVM in sil-
ico predictions for BRCA1 and BRCA2. To evaluate the
usefulness of functional predictions, we also analyzed
the BRCA1 SGE score; the Richardson et al. BRCA2
HDR score; and, for PALB2, five functional assay
scores. These analyses were restricted to carriers of a
rare (frequency<0.1%) missense variant in the train-
ing set, with an endpoint of breast cancer occurrence
(yes/no). The strongest predictors were used to test the
association of different categories of the score(s) com-
pared to a baseline category, in conjunction with func-
tional protein domains, and hence create a set of risk
categories. LR was then used in the training set (carri-
ers and non-carriers) to estimate the odds ratios (OR)
associated with different risk categories. As an alter-
native approach, we fitted mixture models in which
only a proportion of variants (a) was assumed to be
risk associated in the given gene; the OR was assumed
to be the same for all risk associated variants, but the
proportion of risk associated variants varied by risk
category (as defined in the LR models). This model is
motivated by the binary variant classification approach
used in clinical genetics, where all variants are assumed
to be either associated with moderate-high risk (likely
pathogenic) or not (likely benign) [27]. We consid-
ered two types of mixture model: a constrained model
in which the missense OR was equal to that of PTVs,
and an unconstrained model in which the missense OR
could differ from the PTV OR. Carriers of PTVs in the
gene under consideration were re-included in the mix-
ture models (to allow the risk associated missense OR
to be constrained to the PTV OR). The mixture models
were fitted using an expectation—maximization (EM)
algorithm [28]. In the expectation step, the (posterior)
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probability that each variant was risk associated, given
the case control data on that variant in the training
set and the current parameter values was calculated.
These probabilities were then used as weights in a logis-
tic regression analysis in the maximization step. In a
case—control dataset, the naive proportions, a, will be
biased because risk associated variants are more likely
to be found in cases. For the final models, therefore, we
also computed the proportions based only on variants
reported in controls. To evaluate the overall fit of the
models, we compared log-likelihoods.

The initial model selection was based on all samples,
but final parameter estimates were obtained from popu-
lation studies only. In the results, the ORs, P-values, and
a presented are from population studies, unless indicated
by the suffix “ALL"

Case-only analyses of age at diagnosis, with risk cat-
egory as the outcome variable, were performed to evalu-
ate trends in the ORs for variant risk category by age. We
evaluated individual risk variants previously reported
in literature and, in aggregate, those classified as “patho-
genic” or “likely pathogenic” (hereafter, all termed: (likely)
pathogenic) according to clinical guidelines. To examine
whether rare variant frequency is associated with risk, we
used a carrier-only LR analysis to test frequency up to 0.5%
on a continuous scale and a log scale, and to compare rare
variants in two groups: frequency<0.1% versus frequency
0.1-0.5%. We also performed burden analyses within each
gene comparing the risk for non-carriers to the risk for
carriers of variants in one of four frequency groups: <0.1%;
0.1-0.5%; 0.5-1%; and 1-5%. Variants with frequency
between 0.1 and 5% were also evaluated individually.

Validation dataset analysis

To evaluate the calibration of the in silico training
models, we performed case—control analyses using
the validation dataset. In these analyses, OR estimates
were fixed according to the population estimates from
the training models (Table 1), but the other param-
eters (intercept and country covariates) were re-
estimated, since the case—control proportions might
differ between the training and validation datasets.
From the validation model, we extracted the predicted
probability that each individual was a case and hence
derived expected numbers of cases and controls in each
risk group. These were used to plot observed versus
expected OR estimates and perform a goodness of fit
chi-squared test.

The mixture models were assessed similarly, with the
exception that both the OR parameter and the propor-
tion of risk associated variants, a, were fixed. However,
an adjustment to @ was incorporated to allow for the
different distribution of cases and controls within the
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Table 1 Breast cancer risk association results from logistic regression and mixture models of population training samples
N Logistic regression model Mixture model
Risk group Variants® Cases Controls ORP 95% CI¢ P-value Missense OR (95% a® 95% CIf
cne
ATM Log-likelihood = —48,624.97 Log-likelihood = —48,624.64
Non-carriers - 33,351 37,001 1 - - 0 -
Carriers 216 (1.78-2.63)"
Variant outside FAT 714 1259 1443 0.98 (091-1.06) 067 0.0041 (0.001-0.02)
and PIK domains
Variant inside FAT 171 317 333 1.10 (094-129) 024 0.055 (0.03-0.12)
or PIK domain and
CADD score quin-
tiles 1-4¢
Variant inside FAT 103 239 162 1.64 (133-202) 3.1x107° 0.54 (041-0.68)
or PIK domain and
CADD score quintile
59
BRCA1 Log-likelihood = —48,652.14 Log-likelihood = —48,652.29
Non-carriers - 34,191 37,996 1 - - 0 -
Carriers 1061 (7.92-14.21)"
Variant outside RING 479 811 856 1.01 (092-1.12) 079 0.0015 (9.4 x 107°-0.025)
and BRCT domains
Variantinside RING 79 120 103 1.18 (0.90-155) 023 10x107"T NA
or BRCT domain and
low Helix score
Variantinside RING 23 63 16 4.94 (2.83-861) 19x1078 0.48 (0.19-0.78)
or BRCT domain and
high Helix score
BRCA2 Log-likelihood = —48,641.97 Log-likelihood = —48,638.78
Non-carriers - 33,006 36,517 1 - - 0 -
Carriers 5.87 (4.75-7.24)"
Variant with low 1160 2062 2323 0.98 (0.92-1.04) 047 51x107°  (24x107°-052)
Helix score
Variant with high 62 114 94 1.28 (0.96-1.70) 0.087 0.1 (0.04-0.25)
Helix score
CHEK2 Log-likelihood = —48,728.96 Log-likelihood = —48,728.70
Non-carriers - 34,582 38,480 1 - - 0 -
Carriers 1.75 (1.47-2.08)'
Variant with low 157 403 363 1.26 (1.08-146) 0.0025 033 (0.25-043)
Helix score
Variant with high 121 265 177 1.73 (142-211) 47x1078 0.95 (0.86-0.98)
Helix score
PALB2 Log-likelihood = —48,728.67 Log-likelihood = —48,729.17
Non-carriers - 34,622 38,291 1 - - 0 -
Carriers 424 618 713 0.95 (085-1.06) 034 487 (350-677)" 1.1x107% (1.6 x107°-0.88)

2 Number of unique missense substitutions in population dataset

b Logistic regression odds ratio estimate for missense variant carriers

€ 95% confidence interval for logistic regression OR estimate for missense variant carriers

4 Mixture model odds ratio and 95% confidence interval for missense variant carriers

¢ Alpha: estimated proportion of risk associated missense variants

f 95% confidence interval for alpha

9 CADD quintiles 1-4 includes all CADD score values < 3.736542; CADD quintile 5 includes all CADD score values > 3.736542
P Missense variant odds ratio constrained to equal odds ratio for protein truncating variants

I Missense variant odds ratio unconstrained
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validation set compared to the training set. To do this,
the proportions of cases and controls that were car-
rying a risk associated variant in the training set were
estimated separately and a in the validation set was
then computed as a weighted average of these two esti-
mates. As an alternative approach, the predicted ORs
in the validation set were computed using the posterior
probabilities (PP) of each variant being risk associated
(from the training set) as weights. This analysis was
restricted to the subset of individuals carrying variants
found in the training set or carrying no variant.

As a final analysis, a single unconstrained logistic
regression model comprising all the defined risk groups
across the five genes, with non-carriers of any missense
variant as the baseline group, was fitted, and the risks
in the validation set were evaluated.

The estimated familial relative risk /; due to deleteri-
ous missenses in each gene j was estimated using the
@y} +apyrita)”

2pjri+1-2p))°
total frequency of deleterious missense variants,
gi =1=p; and 7; is the estimated relative risk con-
ferred by deleterious variants. The total contribution of
deleterious missense variants was estimated by assum-
ing that the contribution of variants in the different
genes is additive, i.e., Az =1+ (4 —1). The pro-
portion of the overall familial relative risk due to mis-
sense variants was then calculated as log(4,s)/log(2),
that is assuming an overall familial relative risk of 2 and
that variant combine multiplicatively with other
genetic/familial factors, consistent with previous
observations.

formula /; = , where p; is the estimated

Results

ATM

The analysis of ATM missense variants included
4522 carriers of 1146 unique variants. In the car-
rier only analysis, BayesDel (p,;;=0.024), CADD
(par,=0.0022), Helix (py;;=0.0045), and REVEL
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(parL=0.024) scores were all predictive of risk (see
Additional File 2: Table S5). For the most strongly
associated score, CADD, the risk appeared to be
restricted to the fifth quintile (Q5; CADD >3.736542;
p=0.033 compared with third quintile). Functional
protein domain was also predictive, with increased
risks associated with the FRAP-ATM-TRRAP (FAT;
ParL=9.5x10"% and phosphatidylinositol 3-kinase
and 4-kinase (PIK; p,;; =0.0016) domains compared
with variants outside a known domain. Including
CADD and protein domain, only variants in the cat-
egory that included CADD Qb5 variants in the FAT or
PIK domains (FAT/PIK+ CADD5) were associated
with risk relative to non-carriers (OR 1.64 (1.33-2.02),
p=3.1x107% Table 1, Figs. 1a and 2a). In the most par-
simonious mixture model, risk associated variants con-
ferred an equivalent risk to PTVs (OR 2.16 (1.78-2.63));
an estimated 54% (95% CI (41-68%)) of variants in the
FAT/PIK+4 CADDS5 risk group were risk associated,
compared to less than 6% of variants in other risk cat-
egories (Table 1, Figs. 1a and 2a). There was no evidence
that missense variants were associated with a different
risk compared with PTVs (p =0.48). The mixture model
was a slightly better fit to the data than the LR model
(2 x log-likelihood difference =0.67). There was no
association between age-at-diagnosis and risk category
(see Additional File 1: Table S6).

Thirteen ATM missense variants were classified as
(likely) pathogenic on the ClinVar database (see Addi-
tional File 1: Table S7). These variants, in aggregate, were
associated with an increased risk (OR 1.85 (0.98-3.50,
p=0.060; p,;;=0.00053)). However, the association
of (likely) pathogenic variants was not present when
the analysis was restricted to the five variants not in the
FAT or PIK domains (OR=0.97 (0.19-5.08)), though the
carrier numbers were small and the confidence interval
wide. Conversely, variants in the FAT/PIK+ CADD?5 risk
group, in aggregate, remained risk associated, even when

(See figure on next page.)

Fig. 1 Odds ratios and alpha estimates for each of five genes in population training samples. A ATM. Odds ratios for breast cancer risk from logistic
regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control samples. ATM

risk categories: variants lying within the FAT or PI3K/PI4K protein domains with CADD score in the fifth quintile (FAT/PIK+ CADDS5); variants lying
within the FAT or PI3K/PI14K protein domains with CADD score in any of the first four quintiles (FAT/PIK4 CADD1-4); variants lying outside the FAT
and PI3K/PI4K protein domains (Outside FAT/PIK). B BRCA1. Odds ratios for breast cancer risk from logistic regression models. Alpha is the estimated
proportion of risk associated variants from mixture models, based on variants in control samples. BRCAT risk categories: variants lying within the
RING or BRCT domains with a high Helix score (RING/BRCT + Helix-high); variants lying with the RING or BRCT domains with a low Helix score (RING/
BRCT + Helix-low); variants lying outside the RING and BRCT domains (Outside RING/BRCT). C BRCA2. Odds ratios for breast cancer risk from logistic
regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control samples. BRCA2
risk categories: variants with a high Helix score (Helix-high); variants with a low Helix score (Helix-low). D CHEK2. Odds ratios for breast cancer risk
from logistic regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in control
samples. CHEK? risk categories: variants with a high Helix score (Helix-high); variants with a low Helix score (Helix-low). E PALB2. Odds ratios for breast
cancer risk from logistic regression models. Alpha is the estimated proportion of risk associated variants from mixture models, based on variants in
control samples. PALB2 risk categories: carriers of any missense variant (Carriers)
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variants defined as (likely) pathogenic were excluded (OR
1.60 (1.29-1.99)). Two of the variants classified as (likely)
pathogenic were observed in controls only (Additional
File 1: Table S7). One of these (c.8546G > C) is located in
the PIK domain, the other (c.3848 T > C) is not within any
domain; however, both have a Q5 CADD score.

The pathogenic variants listed on ClinVar include
¢.7271 T > G (p.Val2424Gly), previously reported as asso-
ciated with high risk of breast cancer [29, 30]. In the
training dataset, c.7271 T > G was identified in 12 cases (6
population-based) and 6 controls and was not associated
with risk (p=0.37, p,;;=0.081); its population-based
OR estimate of 1.63 (0.56—4.73) was lower than previous
estimates (for example [31]). Another variant previously
reported as risk associated, c.6919C>T (p.Leu2307Phe)
[32], was associated with an increased population risk
(OR=3.71 (1.87-7.38), p=0.00018). Both variants are
located in the FAT domain and have a CADD score in
Q5, but after excluding them from the model, there
remained a significantly increased risk for carriers in
the FAT/PIK+ CADDS risk group (OR 1.48 (1.18-1.85),
p=0.00064).

BRCA1

The analysis of BRCAI missense variants included
2288 carriers of 644 unique variants. For missense vari-
ant carriers, all five continuous in silico scores were
associated with risk (Align-GVGD p,;; =13 x107%,
BayesDel p,;;=0.0013, CADD p,;;=0.011, Helix
Par,=2.1x107%, REVEL p,;; =1.5x 107°). Variants in
two protein domains were also significantly associated
with risk compared with variants outside these domains
(RING finger domain p,;; =3.5x 10~% BRCA1 C-ter-
minal domains (BRCT I-II) p,;; =0.0030; see Additional
File 2: Table S5). The Helix tool categorizes variants with
a high score (>0.5) as “deleterious” and variants with a
low score (<0.5) as “benign”; hereafter, we refer to these
categories as Helix-high and Helix-low, respectively.
Including Helix category and protein domain, we found
that only variants that were inside the RING or BRCT
I-II domains and also in the Helix-high category (RING/
BRCT + Helix-high) were associated with risk (OR com-
pared with non-carriers 4.94 (2.83-8.61), p=1.9 x 1075;
Par=2.5x1077; Table 1, Figs. 1b and 2b). In a mixture
model in which the OR for risk associated missense vari-
ants was constrained to that for PTVs (OR 10.61 (7.92—
14.21)), the estimated proportions of risk associated
variants in the RING/BRCT + Helix-high risk category
was 48% (19-78%) and close to 0% for all other variants
(Table 1, Figs. 1b and 2b). There was no evidence that
the risk associated missense OR differed from the PTV
OR (p=0.98). The LR and mixture models were similarly
good fits to the data (2 x log-likelihood difference =0.30).
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In a case-only analysis, the OR associated with variants
in the RING/BRCT + Helix-high risk category reduced
as age increased (per year OR 0.98 (0.96—1.00), p =0.036;
see Additional File 1: Table S6).

According to the ENIGMA guidelines and/or ClinVar
classifications [13, 14], 13 of the BRCAI missense vari-
ants in the dataset (four in the RING domain and nine
in the BRCT domains) would be classified as (likely)
pathogenic (see Additional File 1: Table S7). In total, the
13 variants were carried by 60 cases and 6 controls and
were strongly associated with risk in the subset of popu-
lation samples (OR 16.68 (5.16-53.94), p=2.6 x 107°).
In our dataset, the most frequent of these variants was
¢.181 T>G (p.Cys61Gly), carried by 29 cases and 2 con-
trols (OR 15.06 (3.58-63.36)). After excluding all (likely)
pathogenic variants, there also remained an increased
risk associated with variants in the RING/BRCT + Helix-
high category (OR 2.39 (1.19-4.78), p=0.014)).

RF and NVM predictions from the analysis of Hart
et al. were available for 577 unique BRCA I missense vari-
ants. Variants predicted to be damaging by the RF model
(OR 1.82 (1.33-2.49), p=1.9 x 10~*) or the NVM model
(OR 2.14 (1.52-3.01), p=1.2x10"°) were associated
with increased risk of breast cancer but not as strongly
as for variants in the Helix-high category (OR 2.76 (1.93—
3.95), p=2.6 x 1078, see Additional File 2: Table S5).

BRCA1 Saturation Genome Editing (SGE) score [22]
was available for 100 unique variants and was strongly
associated with risk (py;; =15x10"% see Additional
File 2: Table S5). Carriers of variants with an SGE loss of
function (LOFgc) consequence had a higher risk than
carriers of variants with a functional (FUNCgy;) conse-
quence (OR,;; 10.79 (3.31-35.16)). Carriers of variants
with an intermediate function (INTggp) consequence also
had, on average, a higher risk than carriers of FUNCgqp
variants (OR,;; 3.17 (0.32-31.15)) though the number of
INTggp carriers was small (total n=6). Since the BRCAI
SGE experiment specifically targeted the domain-cod-
ing regions of the gene, only four variants outside of the
domains were scored. Thus, all BRCAI missense variants
were assigned to one of four potential risk levels, with
SGE score prioritized where available: INT¢r/LOF¢qp;
RING/BRCT + Helix-high (SGE score missing); RING/
BRCT + Helix-low (SGE score missing); or FUNCg; or
carriers of variants outside of the domains. Compared
with non-carriers, there was increased risk for carriers of
variants in the INTg/LOFgg; category (OR 7.22 (2.48—
21.01), p=2.9x107% and in the RING/BRCT + Helix-
high category (OR 5.35 (2.48-11.57), p=2.0 x 107>; see
Additional File 1: Table S8). In a mixture model in which
the OR for risk associated missense variants was con-
strained to that for PTVs (OR 10.69 (7.97-14.33)), the
estimated proportions of risk associated variants in the
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INTgge /LOFgge and the RING/BRCT 4 Helix-high risk
categories were 75% (24—97%) and 51% (6—94%), respec-
tively (Additional File 1: Table S8). The SGE LR model
and SGE mixture model were similarly good fits to the
data (2 x log-likelihood difference =0.12) and both were
better fits to the data compared to the Helix-only models
(LR models 2 x log-likelihood difference =3.40, mixture
models 2 x log-likelihood difference =3.58).

BRCA2

The analysis of BRCA2 missense variants included
5467 carriers of 1425 unique variants. Align-GVGD
(par.=0.0072), BayesDel (p,;=0.059), CADD
(par.=0.036), and Helix (p,;;=0.0016) scores were
associated with risk for carriers of BRCA2 missense vari-
ants (see Additional File 2: Table S5). Risks did not differ
by protein domain (p,;; =0.91). Compared with non-
carriers, carriers of Helix-high variants had a modestly
increased risk of breast cancer (OR 1.28 (0.96-1.70),
p=0.087; p,;;=0.020) whereas carriers of a Helix-
low variant had no increased risk (OR 0.98 (0.92—1.04),
p=0.47; po 1 =0.40; Table 1, Figs. 1c and 2c). Under a
mixture model in which risk associated missense vari-
ants conferred the same risk as PTVs (OR 5.87 (4.75—
7.24)), an estimated 11% (4-25%) of the Helix-high
variants were associated with risk, compared with <0.1%
of Helix-low variants (Table 1, Figs. 1c and 2c). A model
that allowed the OR for missense variants to differ from
that of PTVs did not converge. The constrained mixture
model was a better fit to the data than the logistic regres-
sion model (2 x log-likelihood difference=6.38). There
was no association between age-at-diagnosis and risk cat-
egory (see Additional File 1: Table S6).

Twelve BRCA2 variants would be classified as (likely)
pathogenic according to ENIGMA guidelines or ClinVar
(see Additional File 1: Table S7). In aggregate, the rela-
tive risk estimate for these variants was similar to that for
PTVs (OR 8.91 (2.61-30.42), p=4.8 x 10~%). Ten of these
variants were categorized as Helix-high and two as Helix-
low. Two of the variants categorized as (likely) patho-
genic and Helix-high were observed in controls only (see
Additional File 1: Table S7). After excluding the (likely)
pathogenic variants from the LR model, there remained
no increased risk associated with variants classified as
Helix-high (OR 0.60 (0.27-1.34)).

RF and NVM predictions were available for 1338 and
1339 unique BRCA2 missense variants, respectively.
There was no association with risk for variants predicted
to be damaging by either the RF model (»p =0.16) or the
NVM model (p =0.32; see Additional File 2: Table S5).

BRCA2 HDR assay score was available for 82
unique variants and was strongly associated with risk
(P =6.7x107% see Additional File 2: Table S5).
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Carriers of variants with a prediction of likely patho-
genic or pathogenic (LP/P) had a higher risk than carriers
of variants with a prediction of likely benign or benign
(LB/B) (OR,;; 5.57 (2.36-13.17)). Since the BRCA2
HDR experiment specifically targeted the DNA binding
domain-coding region of the gene, no variants outside
of the domains were scored. Thus, all BRCA2 missense
variants were assigned to one of four potential risk levels,
with functional classification prioritized where available:
LP/P; Helix-high (no functional classification); Helix-
low (no functional classification); or LB/B. Compared
with non-carriers, there was increased risk for carriers of
variants in the LP/P category only (OR 4.72 (1.88-11.84),
p=9.3x10"%; see Additional File 1: Table S9). In a
mixture model in which the OR for risk associated mis-
sense variants was constrained to that for PTVs (OR 5.86
(4.75-7.24)), the estimated proportions of risk associated
variants in LP/P risk category was 43% (11-82%) (see
Additional File 1: Table S9). The functional LR model was
a slightly better fit to the data than the mixture model
(2 x log-likelihood difference=1.85) but both were bet-
ter fits to the data compared to the Helix-only models
(LR models 2 x log-likelihood difference =13.88, mixture
models 2 x log-likelihood difference =5.65).

CHEK2

The analysis of CHEK2 missense variants included 1552
carriers of 325 unique variants. In the carrier-only anal-
ysis, BayesDel (p,;;=0.0091), CADD (p,;;=0.0073),
Helix (p,;;=0.0021), and REVEL (p,;; =0.016) scores
were associated with risk (see Additional File 2: Table S5).
Compared with non-carriers, carriers of a Helix-high
variant had a larger increased risk (OR 1.73 (1.42-2.11),
p=47x 107%) than carriers of Helix-low variants, but
the latter were also associated with an increased risk (OR
1.26 (1.08-1.46), p=0.0025; see Table 1, Figs. 1d and 2d).
There was no significant association with protein domain
(parL=0.98).

In the mixture model analysis, the constrained model
in which risk associated missense variants conferred the
same risk as PTVs could be rejected (p=0.027). Under
the best fitting model, the OR for missense variants was
1.75 (1.47-2.08), with 95% (86-98%) of Helix-high vari-
ants and 33% (25-43%) of Helix-low variants being risk
associated (see Table 1, Figs. 1d and 2d). The mixture
model was a similar fit to the LR model (2 x log-likeli-
hood difference =0.52). We also explored mixture mod-
els with two levels of risk variant: one with an OR equal
to that of PTVs and another conferring a lower risk com-
pared to that of PTVs. The two-level model fitted slightly
better in the full training dataset (2 x log-likelihood dif-
ference =1.10) but not in the population-based studies
(two-level model converged to the one-level model). The
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OR associated with Helix-high variants decreased as age
increased (per year OR 0.99 (0.98-1.00), p=0.017; see
Additional File 1: Table S6).

Two variants, ¢.470 T > G (p.Ile157Ser) and ¢.433C>T
(p-Argl45Trp), were listed as (likely) pathogenic on
ClinVar; both variants have high Helix scores but the
number of carriers in our population-based sam-
ple was too small to evaluate their association with
risk (see Additional File 1: Table S7). One rare vari-
ant, c.349A>G (p.Argll7Gly), was previously identi-
fied as risk associated in BCAC samples, as part of the
OncoArray genome-wide association study (GWAS)
project [31]. In the current dataset, this variant, which is
in the Helix-high category, had an OR 2.69 (1.46—4.94).
After excluding the BCAC GWAS samples from the
current dataset, the OR was 3.40 (1.52-7.61). Excluding
¢.349A > G from the LR model did not change the over-
all relative risk associated with the Helix-high category
(OR 1.64 (1.33-2.02)).

PALB2

The analysis of PALB2 missense variants included 1659
carriers of 472 unique variants. We found no over-
all evidence of risk associated with missense variants
in PALB2 (OR 0.95 (0.85-1.06), p=0.34; p,..=0.98).
In the carrier-only analysis, CADD was the only score
associated with risk (p,;; =0.020; see Additional File
2: Table S5); however, there was no significant differ-
ence in risk between CADD quintiles (p,;; =0.16).
There was no evidence for a difference in risk for car-
riers of variants inside any protein domain versus those
outside (p,;; =0.25). In a mixture model in which the
missense variant risk was constrained to that for PTVs
(OR 4.87 (3.50-6.77)), the estimated proportion of risk
associated variants was 0.011% (95% CI 0—88%; Table 1,
Figs. le and 2e). The log-likelihoods for the mixture
model and logistic regression model were similar
(2 x log-likelihood difference =1.01).

Three (likely) pathogenic variants were listed on Clin-
Var but none of these were present in our samples.
Another variant, c.104 T > C (p.Leu35Pro), has been sug-
gested to be pathogenic based on evidence from one fam-
ily and tumor genomic analysis [33], but this variant was
also not found in our samples.

A subset of the variants from the functional screening
studies were available in the training data set: 26 of the
48 assayed by Boonen et al. [24], 34 of the 84 assayed by
Wiltshire et al. [26] and 18 of the 44 assayed by Rodri-
gue et al. [25]. None of the functional assay scores or the
authors’ corresponding classifications of pathogenicity
were associated with risk in the BRIDGES samples (see
Additional File 2: Table S5).
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Frequency analysis

In burden analyses of variants with frequencies up to
5%, variants in ATM with frequency<0.1% were associ-
ated, in aggregate, with risk (p=0.0024) but no group
of variants of greater frequency was associated (see
Additional File 1: Table S10). For CHEK2, variants with
frequency<0.1% (p=1.1x10"') and those with fre-
quency 0.1-0.5% (p=3.6 x 107°) were associated with
risk; there were no variants with frequency 0.5-5%. None
of the other genes showed an association between any
variant frequency group and risk (see Additional File 1:
Table S10).

When analyses were restricted to frequencies up to
0.5%, there was no association between risk and fre-
quency, either on a continuous scale or as the differ-
ence in risk between the two frequency groups<0.1%
and 0.1-0.5%, for BRCA2, CHEK2, or PALB2 (see Addi-
tional File 1: Table S11). For ATM, we found frequency
inversely associated with risk (continuous p,;; =0.0098)
and a higher risk for variants with frequency <0.1% com-
pared with variants of frequency 0.1-0.5% (p,;;, =0.031).
After adjusting for the CADD and domain risk groups,
the associations remained statistically significant
(Pa11,=0.0097 and p,;;=0.012, respectively). For
BRCAI, we found frequency inversely associated with
risk (continuous p,;; =0.022) and a significantly higher
risk for variants with frequency<0.1% compared with
variants of frequency 0.1-0.5% (p,;;, =0.0066). However,
after adjusting for the Helix and domain risk groups, nei-
ther of these associations remained statistically signifi-
cant (p,;;, =0.36 and p,;; =0.39, respectively).

We evaluated the risks for individual missense vari-
ants with frequency between 0.1 and 5% (see Additional
File 1: Table S12). In BRCA1I, one variant, ¢.2521C>T
(p-Arg841Trp), was associated with a decreased risk of
breast cancer (OR 0.67 (0.52-0.87), p=0.0027). Two
previously-reported variants in CHEK2 were identified:
¢.470 T>C (p.Ile157Thr) and ¢.538C>T (p.Argl80Cys)
[34]. c.470 T>C was associated with an OR of 1.24
(1.09-1.42), consistent with the estimate for the Helix-
low risk category, while ¢.538C>T was associated with a
higher OR 1.44 (1.12-1.84). No ATM, BRCA2, or PALB2
missense variants were individually associated with
increased risk.

Model validation

We evaluated the calibration of the best fitting models
from the training set, for each gene, in the validation set:
these included the LR models, the mixture model using
the estimated proportions (a) from the training set,
and the mixture model using the posterior probabilities
derived from the training set. For each gene and each
model, carriers of variants in the predicted risk groups
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Fig. 3 Breast cancer risk estimates from composite gene model in validation samples. Black marks indicate corresponding ORs from training
models. Risk categories: ATM FAT/PIK 4+ CADD5: ATM variants lying within the FAT or PI3K/PI4K protein domains with CADD score in fifth quintile;
ATM FAT/PIK4+ CADD1-4: ATM variants lying within the FAT or PI3K/PI4K protein domains with CADD score in any of first four quintiles; ATM outside
FAT/PIK: variants lying outside the FAT and PI3K/PI4K protein domains; BRCA1 RING/BRCT + Helix-high: BRCAT variants lying within the RING or BRCT
domains with a high Helix score; BRCA1 RING/BRCT + Helix-low: BRCAT variants lying with the RING or BRCT domains with a low Helix score; BRCA1
outside RING/BRCT: BRCAT variants lying outside the RING and BRCT domains; BRCA2 Helix-high: BRCA2 variants with a high Helix score; BRCA2
Helix-low: BRCA2 variants with a low Helix score; CHEK2 Helix-high: CHEK2 variants with a high Helix score; CHEK2 Helix-low: CHEK2 variants with a

were associated with an increased risk, and there were
no differences between the observed and predicted ORs
(see Additional File 1: Table S13 and Figs. S2-S6). In silico
scores, likelihood ratios and posterior probabilities for
every variant included in the population training dataset
are given in Additional File 2: Tables S14-18.

Using a composite five gene model, we estimated ORs
for eleven risk categories (Fig. 3). In total, 184 samples
carried a missense variant in more than one of the five
genes and were excluded from this analysis. Four catego-
ries were significantly associated with an increased risk
relative to non-carriers, consistent with the estimates
derived from the training set: ATM FAT/PIK+ CADD5
(OR 1.76 (1.16-2.68), p=0.0078), CHEK2 Helix-low

(OR 1.40 (1.04-1.88), p=0.025), CHEK2 Helix-high
(OR=1.89 (1.27-2.81), p=0.0017), and BRCAI
within domain and Helix-high (OR 4.44 (1.45-13.59),
p=0.0089) risk groups. The OR estimate for BRCA2
Helix-high variant carriers was higher than that in the
training dataset, but the confidence interval was consid-
erably wider (OR 1.54 (0.88-2.68)). As predicted, variants
in the remaining categories were not associated with risk.

Discussion

To date, the risks associated with missense variants in
breast cancer predisposition genes have been largely
unclear. In this study of over 112,000 women, we were
able to use a range of in silico scores produced by
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statistical algorithms and knowledge of functional pro-
tein domains to determine the risks associated with sub-
sets of rare missense variants. We identified groups of
missense variants conferring increased risks of breast
cancer in ATM, BRCA1, BRCA2, and CHEK2, but not
in PALB2. The ORs for BRCA1 and CHEK2 decreased
with age at diagnosis, consistent with previous observa-
tions for PTVs [7]. Previous analysis of the full BRIDGES
dataset showed that protein domains in ATM and BRCA1
were predictive of risk [7]; the analysis presented here
showed that in silico scores improved these predictions,
in a formal model evaluation that allowed the mod-
els to be tested in an independent validation set. Under
the best fitting mixture models, for ATM, BRCA1, and
BRCA2, a small proportion of rare missense variants
were associated with risks comparable to those for PTVs.
In contrast, for CHEK2, a high proportion of CHEK2
missense variants were risk associated and the estimated
risk was markedly lower than that associated with PTVs.
In PALB2, the evidence for association was weak; the
mixture model analysis indicated that the proportion of
missense variants associated with a high risk is likely to
be very small. However, we cannot rule out the possibil-
ity that some variants are risk-associated since the power
for detecting an association with risk for PALB2 is lower
than, for example, BRCAI and BRCA2. One variant in
BRCAI (p.Arg841Trp) was individually associated with
a reduced risk of breast cancer (0.67 (0.52—0.87)). Given
that this finding is inconsistent with all the other associa-
tions and that the variant is not in any of the key func-
tional domains, it seems quite likely that this is a chance
association; further replication in other datasets will be
required to confirm or refute the association.

We used five in silico scores to predict the pathogenic-
ity of individual variants. Helix, BayesDel, and CADD
were all predictive for the four genes for which we were
able to identify subsets of risk-associated variants; Helix
was most predictive for BRCAI, BRCA2, and CHEK?2
while CADD outperformed all the other scores for
ATM. In addition to the in silico scores, we also tested
the BRCA1 SGE functional assay score. We found that
the SGE score slightly improved the performance of the
model for predicting risk for BRCAI missense variant
carriers, compared with the Helix-only model. Consist-
ent with this, we observed two variants that were classi-
fied as loss-of-function variants by SGE but appeared in
our low-risk group; these were present in three cases and
no controls. Conversely, another four variants that were
classified as normal function by SGE but appeared in our
high-risk group were present in eight cases and five con-
trols. Overall, variants categorized by SGE as disruptive
to function, or lying within a protein domain and scored
high by Helix, were strongly associated with increased
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risk. Under the mixture model, the proportions of risk-
associated variants were also high, although the confi-
dence intervals for the proportion of associated variants
were wide. It is notable that 11 of the 31 variants in these
categories have previously been identified as (likely)
pathogenic by ClinVar and/or ENIGMA.

Similarly, for BRCA2, we also tested the HDR func-
tional assay score and found it improved the performance
of the model for predicting risk for BRCA2 variant carri-
ers, compared to the Helix-only model. Consistent with
this, four variants in the Helix-high category were clas-
sified as benign by the functional study and observed
in 22 cases and 35 controls. Conversely, one variant in
the Helix-low category was classified as pathogenic by
the functional study and observed in two cases and no
controls. After accounting for variants predicted to be
pathogenic by the functional assay, there remained no
significant increase in risk for carriers of variants in the
Helix-high variant category, compared to non-carriers,
although the OR of 1.37 for the Helix-high category was
higher than the ORs of 0.97 and 0.96 for the Helix-low
and predicted benign categories, respectively. We note
that the variants tested using the HDR assay were subse-
quently classified using a combination of the assay result
and American College of Medical Genetics and Genom-
ics/Association for Molecular Pathology (ACMG/AMP)
guidelines; ACMG guidelines also used by the ENIGMA
BRCA1/2 expert panel and in evidence for pathogenicity
in ClinVar. Consequently, there is considerable overlap
between classifications; nine of the 14 variants classified
as (likely) pathogenic by the functional study have been
previously identified as (likely) pathogenic by ClinVar
and/or ENIGMA.

The BRCA2 HDR functional assay included only vari-
ants lying in the DNA binding domain of BRCA2. The
majority of high-Helix variants were also in the DNA
binding domain (37/62) and fewer [21] in the “colds-
pot” regions of exons 10 and 11 as described by Dines
et al. [35] (by definition, none of the BRCAI variants in
the high-risk category fall in the corresponding exon 11
coldspot).

In ATM, the risk conferred by missense variants was
confined to specific protein-coding domains, namely
the FAT and PIK domains, consistent with previous
studies [5] and as shown previously in BRIDGES [7].
Variants within these domains could be further dis-
tinguished using the CADD score; variants in the top
quintile were associated with risk whereas variants in
the first four quintiles were not. In a mixture model,
54% of variants in the top CADD quintile were esti-
mated to be associated with risk. One variant in this
group, c.7271 T > G (p.Val2424Gly), has been previously
reported as a breast cancer risk variant but the OR
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estimate for this variant, 1.63 (0.56—4.73), was mark-
edly lower than previously estimated (relative risks
ranging from 8.0 to 12.7) [29-31]. The reasons for this
difference are unclear but might be due, in part, to pre-
vious studies oversampling for cases with a family his-
tory of breast cancer.

The results for CHEK2 were in marked contrast to
those for BRCA1, BRCA2, and ATM. In the best fitting
mixture model, the proportion of associated variants
was high, and the estimated risk was clearly lower than
for PTVs. A model in which there were two levels of
risk, with the higher level equal to the PTV risk, fitted
slightly better in the full training dataset but not in the
population-based training studies. In addition, how-
ever, three individual CHEK?2 variants were associated
with differing levels of risk: c.470 T>C (p.Ile157Thr)
OR 1.24 (1.09-1.42); ¢.538C>T (p.Argl80Cys) OR 1.44
(1.12-1.84); and ¢.349A>G (p.Argll7Gly) OR 2.69
(1.46-4.94). The c.470 T > C variant was too common
to be included in the main analyses, possibly explaining
why the heterogeneity in risk was not readily detectable
by the mixture models; however, the confidence inter-
val for ¢.470 T > C from the individual-level analysis did
not include the LR and mixture model OR estimates of
1.73 and 1.75, respectively, for the risk-associated vari-
ants. Taken together, these observations suggest that
there is substantial variation in risk associated with
CHEK?2 missense variants.

The relative performances of the in silico prediction
algorithms are perhaps less marked than might appear;
for example, Helix, which was the most predictive algo-
rithm for three of the genes, was also predictive for
ATM. Some of the differences in the associations may be
due to chance. Align-GVGD was initially developed for
BRCA1/2 so it is perhaps not surprising that the algo-
rithm does relatively well for BRCAI but less well for
CHEK?2, for example. Helix was not developed for a spe-
cific gene so may be a more useful tool in general.

We controlled for the potential effects of population
stratification by stratifying analyses by country and by
excluding individuals with the minority ancestry for that
country. Thus, European studies excluded individuals of
non-European ancestry and Asian studies excluded indi-
viduals of non-Asian ancestry. In addition, for the studies
in Malaysia and Singapore, we further stratified into the
three ethnic groups (Chinese, Malay, Indian). In previous
analysis of PTVs, we found no differences in effect sizes
when additionally correcting for ancestry informative
principal components, suggesting that this correction
was adequate, particularly since most of the associations
were based on many variants [7]. Nevertheless, it remains
possible that some estimates may be biased due to resid-
ual population stratification [36, 37].
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Under the best fitting mixture model, approximately
7% of all rare missense variants in ATM were associated
with similar risk to that of PTVs. The estimated carrier
frequency of pathogenic missense variants in ATM was
0.0030, or approximately 89% of the PTV frequency. The
corresponding proportion of associated rare missense
variants for BRCAI and BRCA2 was 2% and 0.6%, with
an estimated carrier frequency of 0.00026 (~18%) and
0.00028 (~9%), respectively. Thus, missense variants
add modestly to the contribution of BRCAI and BRCA2
variants to breast cancer incidence, but make a relatively
more substantial contribution for ATM. The differences
between genes in the relative contributions of missense
variants to risk presumably reflect the relative propor-
tion of residues within functional domains in which dis-
rupted function is associated with cancer risk, and the
size of those domains. For CHEK?2, approximately 60% of
rare missense variants were risk associated and the esti-
mated carrier frequency of pathogenic missense variants
in CHEK2 was comparable to the frequency of PTVs.
The predicted proportion of breast cancer cases possess-
ing pathogenic germline missense variants in these genes
is approximately 0.6%, 0.3%, 0.2%, and 1.3% for ATM,
BRCA1, BRCA2, and CHEK?, respectively. The estimated
additional contribution to the familial relative risk of
breast cancer made by pathogenic missense variants in
these five genes is approximately 2.7%.

The task of identifying which specific individual mis-
sense variants are risk associated is a complex one and is
difficult to resolve fully even with a large dataset, since
most variants are rare and there are many possible mod-
els to consider. Despite the size of our study, it was dif-
ficult to distinguish, for any gene, between the LR models
(in which all variants in a given category confer a given
risk) and the mixture models (in which all risk-associated
variants confer the same risk, but the proportion that
are associated varies by category). This difficulty arises
because the number of carriers for individual variants is
small, and as a result, the estimated risk of pathogenic
missense variants and probability of pathogenicity («) are
strongly confounded. Further, selecting the best models
and estimating the risks based on these models is likely
to result in overfitting and biased risk estimates. In order
to strengthen the validity of our findings, we used a train-
ing-validation study design. We were able to replicate the
predicted OR estimates in the validation dataset, suggest-
ing that any bias due to overfitting was small. Neverthe-
less, the validation dataset was relatively small, so further
validation of the best models reported here in large inde-
pendent datasets is critical.

Ultimately, high-throughput functional assays that
can evaluate all possible missense substitutions may
provide more precise definitions of risk categories. The
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analyses of the BRCA1 SGE scores and the BRCA2 HDR
assay scores suggest that this approach should be useful,
although the scores for BRCA1 were highly concordant
with the best in silico score in this case. The available
PALB2 functional assays did not predict risk, but this
may just reflect the low power of these analyses when
the proportion of risk-associated variants is very low. As
further prediction algorithms based on in silico and/or
in vitro data are developed, large population-based epi-
demiological datasets such as BRIDGES can be used to
validate their predictions. However, further large studies
are likely to be required to provide more precise variant-
specific risk estimates.

Conclusions

This study confirms that subsets of missense variants in
established breast cancer susceptibility genes are asso-
ciated with increased risks of the disease and provides
estimates of relative risks for those subsets, as well as
probabilities for association with risk at the variant level.
The pattern of risk varies substantially by gene. Accu-
rately and precisely defining these risks is critical to the
counselling and management of women in whom these
variants are identified.
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