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IMPORTANCE Rare germline genetic variants in several genes are associated with increased
breast cancer (BC) risk, but their precise contributions to different disease subtypes are
unclear. This information is relevant to guidelines for gene panel testing and risk prediction.

OBJECTIVE To characterize tumors associated with BC susceptibility genes in large-scale
population- or hospital-based studies.

DESIGN, SETTING, AND PARTICIPANTS The multicenter, international case-control analysis of
the BRIDGES study included 42 680 patients and 46 387 control participants, comprising
women aged 18 to 79 years who were sampled independently of family history from 38
studies. Studies were conducted between 1991 and 2016. Sequencing and analysis took place
between 2016 and 2021.

EXPOSURES Protein-truncating variants and likely pathogenic missense variants in ATM,
BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53.

MAIN OUTCOMES AND MEASURES The intrinsic-like BC subtypes as defined by estrogen
receptor, progesterone receptor, and ERBB2 (formerly known as HER2) status, and tumor
grade; morphology; size; stage; lymph node involvement; subtype-specific odds ratios (ORs)
for carrying protein-truncating variants and pathogenic missense variants in the 9 BC
susceptibility genes.

RESULTS The mean (SD) ages at interview (control participants) and diagnosis (cases) were
55.1 (11.9) and 55.8 (10.6) years, respectively; all participants were of European or East Asian
ethnicity. There was substantial heterogeneity in the distribution of intrinsic subtypes by
gene. RAD51C, RAD51D, and BARD1 variants were associated mainly with triple-negative
disease (OR, 6.19 [95% CI, 3.17-12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI,
5.27-19.19], respectively). CHEK2 variants were associated with all subtypes (with ORs ranging
from 2.21-3.17) except for triple-negative disease. For ATM variants, the association was
strongest for the hormone receptor (HR)+ERBB2− high-grade subtype (OR, 4.99; 95% CI,
3.68-6.76). BRCA1 was associated with increased risk of all subtypes, but the ORs varied
widely, being highest for triple-negative disease (OR, 55.32; 95% CI, 40.51-75.55). BRCA2 and
PALB2 variants were also associated with triple-negative disease. TP53 variants were most
strongly associated with HR+ERBB2+ and HR–ERBB2+ subtypes. Tumors occurring in
pathogenic variant carriers were of higher grade. For most genes and subtypes, a decline in
ORs was observed with increasing age. Together, the 9 genes were associated with 27.3% of
all triple-negative tumors in women 40 years or younger.

CONCLUSIONS AND RELEVANCE The results of this case-control study suggest that variants in
the 9 BC risk genes differ substantially in their associated pathology but are generally
associated with triple-negative and/or high-grade disease. Knowing the age and tumor
subtype distributions associated with individual BC genes can potentially aid guidelines for
gene panel testing, risk prediction, and variant classification and guide targeted screening
strategies.
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B reastcancer(BC)isaheterogeneousdisease;differentsub-
types are associated with distinct biology, prognosis, and
potential for therapy.1-3 There is evidence that inherited

genetic predisposition contributes to this heterogeneity.4,5 How-
ever, data for detailed analysis of tumor pathologies that are
associated with most BC susceptibility genes have been lim-
ited, particularly in population-based studies. Recent results
from 2 large-scale sequencing studies, BRIDGES6 and
CARRIERS,7 found evidence of an association with BC risk for
germline protein-truncating variants (PTVs) and/or rare
missense variants (MSVs) in 9 genes: ATM, BARD1, BRCA1,
BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53. Women
carrying variants in these genes may be offered enhanced
screening, including by magnetic resonance imaging, risk-
reducing surgery, chemoprevention, and genetic coun-
selling; knowledge of germline gene variants also affects
treatment.8 Intrinsic BC subtypes have been defined on the ba-
sis of patterns of gene expression; these include luminal-A,
which defines a subset of hormone receptor–positive tumors
that are associated with a good 5-year prognosis, and lumi-
nal-B, ERBB2-enriched and basal tumors with poorer
prognosis.2,9 Gene expression data are not routinely avail-
able in diagnostic laboratories, but large-scale epidemiologi-
cal studies can use subtypes based on immunochemical mark-
ers to define intrinsic-like surrogates that are broadly associated
with the molecular subtypes.10,11 In this article, we use data
from BRIDGES to assess associations between variants in these
genes and pathological features of nonmetastasized breast tu-
mors relevant to prognosis and/or distinct therapeutic op-
tions. We further quantify the contribution of rare BC suscep-
tibility genes to the development of distinct BC subtypes in
women of different ages.

Methods
Studies and Inclusion Criteria
The BRIDGES study included women with BC and unaffected
control participants who were participating in the Breast Can-
cer Association Consortium (https://bcac.ccge.medschl.cam.
ac.uk/; eTable 1 in Supplement 1). The analyses presented in this
article are based on cases from the subset of population-based
or hospital-based studies that were sampled independently of
family history, together with population-matched control
participants (38 studies). Women aged between 18 and 79 years
were included. Pathology information from the first primary
invasive BC was considered. Cases in which the index tumor was
the second tumor and patients with metastases at initial
diagnosis were excluded.12 All studies were approved by the
relevant ethical review boards, and participants provided written
informed consent.

Laboratory Methods, Variant Calling, and Classification
We focused on 9 genes with evidence of an association with
BC.6 We considered PTVs for all 9 genes, and rare (carrier fre-
quency <0.1%) MSVs in BRCA1, BRCA2 and TP53 that were likely
pathogenic according to adaptations of the American College
of Medical Genetics guidelines.6 Approximately 80% of CHEK2

PTVs were c.1100delC. The TP53 PTV and MSV carriers were
considered together. Carriers of BRCA1 and BRCA2 PTVs were
excluded from the analyses of other genes. Carriers of PTVs in
BRCA1 and BRCA2 and women who harbored a pathogenic vari-
ant in more than 1 non-BRCA gene were also excluded. Non-
carriers were defined as women without PTVs or MSVs in any
of the genes. Further details are provided in the eMethods in
Supplement 1.

Tumor Pathology
Pathology information was based on histology and immuno-
histochemistry results from medical records, rescored whole
slides, or tumor microarrays that were curated in the Breast
Cancer Association Consortium database, version 12.13,14 Mark-
ers included estrogen receptor (ER), progesterone receptor (PR),
and erb-b2 receptor tyrosine kinase 2 (ERBB2, formerly known
as HER2) status, which was denoted as positive or negative;
histological grade (grades 1, 2, and 3); morphology; tumor size
(<2, 2-5, or >5 cm); lymph node involvement (yes/no); and TNM
stage (I, II, and III). For the purposes of this analysis, we de-
fined 5 clinically relevant intrinsic subtypes based on avail-
able immunohistochemistry and grade: HR+ERBB2− low
(/intermediate) grade, HR+ERBB2+, and HR+ERBB2− high grade,
HR−ERBB2+ and triple negative (TN). Grades 1 and 2 were con-
sidered low-grade and grade 3 high-grade disease (eTable 2 in
Supplement 1).11,12,15,16

Statistical Analysis
Analyses were based on estimating the odds ratios (ORs) as-
sociated with carrying any PTV (or pathogenic MSV) in each
gene. First, complete-case analyses based on all available data
were conducted. Case-control analyses were used to esti-
mate the OR for developing a tumor of a particular subtype ac-
cording to single markers and case-only analyses to evaluate
the evidence for differences by subtype. Logistic regression was
used for binary characteristics and multinomial logistic re-
gression for multicategory tumor characteristics. For multi-
category outcomes, a model in which the log(OR) varied lin-
early with the outcome level was also fitted. Analyses were
adjusted for age (defined as age at diagnosis for patients and

Key Points
Question What breast tumor characteristics are associated with
rare pathogenic protein truncating or missense variants in breast
cancer susceptibility genes?

Findings In this case-control study involving 46 387 control
participants and 42 680 women with a diagnosis of breast cancer,
pathology features (eg, tumor subtype, morphology, size, TNM
stage, and lymph node involvement) associated with rare germline
(likely) pathogenic variants in 9 different breast cancer
susceptibility genes were studied. Substantial differences in tumor
subtype distribution by gene were found.

Meaning The results of this study suggest that tumor subtypes
differ by gene; these findings can potentially inform guidelines for
gene panel testing, risk prediction in unaffected individuals,
variant classification, and understanding of breast cancer etiology.
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age at interview for control participants) and country of ori-
gin of the study.

To evaluate heterogeneity of risk by intrinsic tumor sub-
types, we first imputed missing pathology variables using
Multiple Imputation by Chained Equations. Intrinsic sub-
types were constructed for each of 100 imputed data sets, and
the results of multinomial regression for each imputed data
set were pooled. We also compared these data with results ob-
tained after imputing tumor pathology using an expectation-
maximization (EM) algorithm (eMethods in Supplement 1).17

We investigated interactions with age for each gene accord-
ing to tumor subtype by including an age x variant product term
in the model and also estimated the proportion of BC cases,
by age-group and intrinsic subtype, for pathogenic variants in
each gene.

Associations between (likely) pathogenic variant carrier
status and tumor size and lymph node status were evaluated.
Analyses were also conducted that included size, lymph node
status, and intrinsic subtype in the same model and PR status
and the HR-positive subtypes in the same model.

Gene-specific cumulative risks for each subtype were cal-
culated by combining age-specific OR estimates with 2016 UK
population incidence rates as a baseline and accounting for
competing risk of not developing BC of a different subtype. Age-
specific and gene-specific subtype proportions for tumor sub-
types included in the risk prediction algorithm BOADICEA18

were also calculated (eMethods in Supplement 1).
Analyses were conducted using RStudio, version 1.2.5033

(RStudio); Stata, version 14.2 (StataCorp); and GFortran. Sta-
tistical significance was set at P < .05.

Results
Study Characteristics
The study comprised 46 387 control participants and 42 680
women with a diagnosis of BC from 22 countries, with mean
(SD) ages at interview and diagnosis of 55.1 (11.9) and 55.8 (10.6)
years, respectively (eTable 3 in Supplement 1). Numbers of vari-
ant carriers by gene are shown in eTable 4 in Supplement 1 and
patterns of missingness in pathology data in eTable 5 in
Supplement 1 and eTable 1 in Supplement 2; for ER status, 18%;
grade, 18%; PR status, 32%; and ERBB2 status, 43% of data were
missing. There was no association between missingness and
genotype.

Single marker analyses were based on complete data (eFig-
ure 1 in Supplement 1 and eTables 2 and 3 in Supplement 2).
The remaining analyses were carried out following imputa-
tion of missing data.

Distribution of Intrinsic Tumor Subtypes and Age Trends
The PTVs in all 9 BC genes showed evidence of variation in the
ORs among the 5 intrinsic subtypes (Figure 1, Figure 2; eFig-
ures 2-5 and eTables 6 and 7 in Supplement 1; eTable 4 in
Supplement 2). For BRCA1 PTV carriers, the OR was highest
(OR, 55.32; 95% CI, 40.51-75.55) for TN disease, much lower
for HR+ERBB2− low-grade disease (OR, 3.26; 95% CI, 2.21-
4.80) and HR+ERBB2+ disease (OR, 2.27; 95% CI, 1.16-4.45), and

intermediate for HR+ERBB2− high-grade and HR−ERBB2+ dis-
ease (OR, 13.5 [95% CI, 9.16-19.90] and OR, 9.85 [95% CI, 5.71-
17.02], respectively). Associations between BRCA2 PTVs and
intrinsic subtypes were more homogeneous across subtypes,
with higher ORs associated with HR+ERBB2− high-grade dis-
ease (OR, 11.53; 95% CI, 8.92-14.90) and TN tumors (OR, 10.07;
95% CI, 7.61-13.32). For ATM, the association was strongest for
HR+ERBB2− high-grade tumors (OR, 4.99; 95% CI, 3.68-
6.76). CHEK2 PTVs were associated with similar ORs with all
subtypes except TN, for which there was no evidence of asso-
ciation. PALB2 PTVs were associated with all subtypes, but with
higher ORs for HR+ERBB2− high-grade (OR, 9.43; 95% CI, 6.24-
14.25) and TN disease (OR, 8.05; 95% CI, 5.17-12.53).

The PTVs in RAD51C, RAD51D, and BARD1 were most
strongly associated with TN disease (OR, 6.19 [95% CI, 3.17-
12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI,
5.27-19.19], respectively). RAD51D PTVs were also associated
with HR+ERBB2− high-grade tumors.

Similar to PTVs, carriers of BRCA1 MSV were strongly en-
riched for TN disease (eTable 4 in Supplement 2 and eFig-
ure 6 in Supplement 1). The ORs were higher than those for
PTVs for all of the intrinsic subtypes, although these differ-
ences were not statistically significant. For BRCA2, the ORs for
MSVs and PTVs were similar. TP53 variants were associated
with HR−ERBB2+ and HR+ERBB2+ but not TN disease.

A decline in the ORs with increasing age was observed for
BRCA1 and BRCA2; this trend was similar for all subtypes (OR,
0.96 per year for both genes; P = 7.05 × 10−7 and 3.14 × 10−11

for BRCA1 [95% CI, 0.94-0.98] and BRCA2 [95% CI, 0.95-
0.97], respectively; eTable 4 in Supplement 2). The ORs also
declined with age for CHEK2, but the trend was much weaker.
There was no evidence of a decline in the ORs for ATM, BARD1,
RAD51C, or RAD51D, but the confidence limits for the last 3
genes were wide.

We further stratified HR-positive subtypes by PR expres-
sion to determine whether carrier status was associated with
PR. For BRCA1, the ORs were lowest for ER+, PR+ tumors com-
pared with other categories (eTable 8 in Supplement 1). Con-
sistent with this observation, BRCA1 PTV carriers were more
likely to be PR negative, even after adjusting for intrinsic sub-
type. There was also some weak evidence for BRCA2 PTVs and
PR negativity, but no evidence for the other genes.

Association Between Breast Cancer Susceptibility
Genes and Other Prognostic Factors
The PTVs in BRCA2, CHEK2, and PALB2 were associated with
larger tumor size, lymph node involvement, and higher stage
at diagnosis (eFigure 1 in Supplement 1). The individual asso-
ciations with larger tumor size and lymph node involvement
remained significant after adjusting for intrinsic subtypes. The
association between PTVs in all 9 genes with intrinsic sub-
types remained similar after including size and lymph node
status in the model (eTable 5 in Supplement 2).

For each gene, most BCs were carcinoma no special type
(ductal carcinoma); in aggregate, 71% of tumors in carriers and
68% in noncarriers were ductal carcinoma. BRCA1 tumors were
less likely to be lobular than ductal (OR, 0.40; 95% CI, 0.25-
0.63) but more likely to be medullary than nonmedullary (OR,
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5.24; 95% CI, 3.34-8.22) (eTables 2 and 3 in Supplement 2). TP53
tumors were more likely to be mixed lobular and ductal than
ductal carcinoma (OR, 7.01; 95% CI, 3.04-16.17; P = 5 × 10−6).
Otherwise, tumors associated with variations in the other BC
genes were not enriched for any particular morphology.

Prevalence of Pathogenic Variants According
to Subtypes and Age
We assessed the association between rare variants in BC sus-
ceptibility genes with the burden of disease in women of dif-
ferent ages (eFigures 7-12 and eTable 7 in Supplement 1). To-
gether, the 9 genes were associated with 14.4% of all tumors
in women 40 years or younger but less than 4% in women older
than 60 years. Among younger women, the prevalence of vari-
ants combined was higher among women with TN and
HR+ERBB2− high-grade tumors than those with other sub-
types. The highest prevalence (27.3%) was among women 40
years or younger with TN tumors, mainly driven by BRCA1
(eFigure 7 in Supplement 1). The combined prevalence of
pathogenic variants was close to or exceeded 10% for all sub-
types in women younger than 40 years and for TN and
HR+ERBB2− high-grade disease in women aged 40 to 59
years. Although TP53-related tumors comprised only a small
proportion of ERBB2-positive disease, approximately 70%
of TP53 tumors among women 40 years or younger were
ERBB2-positive.

Age-Specific Cumulative Risk of Developing
Intrinsic BC Tumor Subtypes
Estimated cumulative risks according to intrinsic subtypes are
shown in Figure 3 and Figure 4. The estimated risk for TN
tumors was highest for BRCA1 (40% by age 80 years), and 7%
to 12% for BRCA2, BARD1, PALB2, RAD51C, and RAD51D. In
contrast, the highest risks for HR+ERBB2− low-grade disease
were associated with BRCA2 (22%) followed by PALB2 and
CHEK2.

Discussion
This case-control study evaluated the pathology of BCs
developing in carriers of PTVs and/or rare MSVs in 9 BC sus-
ceptibility genes: ATM, BARD1, BRCA1, BRCA2, CHEK2,
PALB2, RAD51C, RAD51D, and TP53 in a large multicenter
collaborative study comprising population-based and hospital-
based studies. The pattern of intrinsic subtypes and markers
of tumor aggressiveness differed between carriers of variants
in individual BC susceptibility genes and noncarriers. As
expected,19,20 BC in BRCA1 carriers were strongly enriched for
TN tumors, with TN disease representing approximately 60%
of all tumors and approximately 70% of tumors in women 40
years and younger. However, the risks for all other subtypes
were also increased (ORs, 2.27-13.5). For BRCA2, the highest

Figure 1. Association Odds Ratios (ORs) for Protein-Truncating Variant Carrier Status in Breast Cancer
Susceptibility Genes BRCA1, BRCA2, ATM, and CHEK2 and Intrinsic Subtypes of Breast Cancer

0.2 20101
OR (95% CI)

OR (95% CI)

BRCA1A

HR positive, ERBB2
negative  low grade

3.26 (2.21-4.80)

HR positive, ERBB2
positive

2.27 (1.16-4.45)

HR positive, ERBB2
negative  high grade

13.50 (9.16-19.90)

HR negative, ERBB2
positive

9.85 (5.71-17.02)

Triple negative 55.32 (40.51-75.55)

0.2 20101
OR (95% CI)

OR (95% CI)

BRCA2B

HR positive, ERBB2
negative  low grade

5.05 (4.03-6.33)

HR positive, ERBB2
positive

5.28 (3.73-7.45)

HR positive, ERBB2
negative  high grade

11.53 (8.92-14.90)

HR negative, ERBB2
positive

3.38 (1.91-5.97)

Triple negative 10.07 (7.61-13.32)

0.2 20101
OR (95% CI)

OR (95% CI)

ATMC

HR positive, ERBB2
negative  low grade

1.97 (1.52-2.55)

HR positive, ERBB2
positive

1.66 (0.93-2.95)

HR positive, ERBB2
negative  high grade

4.99 (3.68-6.76)

HR negative, ERBB2
positive

0.92 (0.36-2.35)

Triple negative 1.14 (0.60-2.17)

0.2 20101
OR (95% CI)

OR (95% CI)

CHEK2D

HR positive, ERBB2
negative  low grade

2.65 (2.25-3.14)

HR positive, ERBB2
positive

3.17 (2.36-4.26)

HR positive, ERBB2
negative  high grade

3.02 (2.33-3.91)

HR negative, ERBB2
positive

2.21 (1.41-3.48)

Triple negative 1.25 (0.81-1.94)

(OR = 55.3)

Multiple Imputation by Chained Equations imputation was conducted as
described in the Methods and intrinsic subtypes constructed for each imputed
data set. Multinomial logistic regression was conducted with intrinsic subtypes

as the outcome variable, adjusting by age at diagnosis/interview and country,
and the results of these analyses were pooled. These results are also shown in
eTable 4 in Supplement 2. HR indicates hormone receptor.
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ORs were for HR+ERBB2− high-grade and TN disease, which
was consistent with the strong association with ERBB2
negativity.21,22 The most common subtype (43% of cases) was
HR+ERBB2− low (/intermediate)–grade disease, but a clear ex-
cess of TN disease (approximately 18% of tumors) was appar-
ent, even at younger ages. Subtype-specific associations for
BRCA1 and BRCA2 MSVs were similar to those for PTVs in the
corresponding genes.

Although the ORs were lower, the pattern of intrinsic sub-
types for PALB2 carriers was very similar to that for BRCA2
carriers (Figures 1 and 2), with variation in both genes being
associated with ERBB2 negativity and TN disease.23 This simi-
larity may reflect the closely associated functions of PALB2 and
BRCA2 in the DNA damage response.24

Conversely, the profile of intrinsic subtypes associated with
BARD1 carriers was similar to BRCA1 carriers, with an excess
of TN tumors (40% of cases), albeit the overall risk was much
lower. Consistent with this observation, Bard1 and Brca1 knock-
out mice have similar phenotypes.25 BARD1 and BRCA1 pro-
teins form a stable complex, the heterodimer coordinating a
range of cellular pathways to maintain genomic stability. Al-
though BRCA1 requires BARD1 for stability and tumor sup-
pressor functions, BARD1 also plays distinct roles in cell cycle
progression.25,26

Carriers of PTVs in ATM and CHEK2 were more strongly
associated with ER-positive disease, but this study highlights

some differences. For ATM, the association was particularly
strong for HR+ERBB2− high-grade tumors (OR, 4.99; 95% CI,
3.68-6.76), with weaker associations for the other HR-
positive subtypes (although HR+ERBB2− low-grade tumors
were still the most common). An association with the lumi-
nal B subtype has been reported previously in a small data set
(n = 28).27 CHEK2 was associated with a similar OR for all the
HR-positive subtypes and increased risk of HR−ERBB2+, but
not TN disease. ATM plays a central role in the activation of
DNA damage response and cell cycle checkpoint control, while
CHEK2 is involved downstream of ATM in cell cycle arrest,
apoptosis, and DNA repair.28,29

RAD51C and RAD51D are known ovarian cancer susceptibil-
ity genes and are more recently associated with BC,6,30 in par-
ticular with TN disease.4,31,32 In the present study, ORs for TN
disease for PTVs in both genes were approximately 6.0. The sub-
type distribution of RAD51C is similar to RAD51D, reflecting their
closely associated functions. We did observe an excess of
HR+ERBB2− high-grade tumors in RAD51D but not RAD51C car-
riers; however, the numbers of PTV carriers were small and we
cannot exclude the subtype distributions being similar.

TP53 tumors were strongly enriched for ERBB2-positive
subtypes (46% of cases), which was consistent with earlier
studies in patients with or without Li-Fraumeni syndrome33,34

and examination of patients identified by multigene panel
testing.35 We also observed an association with mixed ductal

Figure 2. Association Odds Ratios (ORs) for Protein-Truncating Variant Carrier Status in Breast Cancer
Susceptibility Genes PALB2, BARD1, RAD51C, and RAD51D and Intrinsic Subtypes of Breast Cancer
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Multiple Imputation by Chained Equations imputation was conducted as
described in the Methods and intrinsic subtypes constructed for each imputed
data set. Multinomial logistic regression was conducted with intrinsic subtypes

as the outcome variable, adjusting by age at diagnosis/interview and country,
and the results of these analyses were pooled. These results are also shown in
eTable 4 in Supplement 2. HR indicates hormone receptor; NA, not applicable.
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and lobular morphology, tumors that comprise distinct but
clonally related morphological components.36

Pathogenic PTVs and MSVs in these 9 BC susceptibility
genes were disproportionately associated with more aggres-
sive BC, particularly among younger women. Carriers of rare
genetic variants in the 9 genes constituted almost a third of
women who received a diagnosis at or younger than 40 years
of TN disease and approximately 16% of women with
HR+ERBB2− high-grade disease. All genes except CHEK2 were
more strongly associated with high-grade disease. Across
genes, 27% to 72% of tumors were grade 3 (eTable 2 in Supple-
ment 2). Previously studies have suggested that tumors in car-
riers of rare PTVs are larger23,37-40 and more likely to be iden-
tified as interval rather than screen-detected cancers.37 In the
present study, BRCA2-, CHEK2-, and PALB2-associated tu-
mors were larger and more likely to be lymph node positive.

Despite the strong enrichment of TN disease for many of
the genes, most carriers will still develop HR+ disease. With
the exception of BRCA1, the most common subtype for all genes
was HR+ERBB2− low (/intermediate)–grade disease (Figures 3
and 4). However, these absolute risk projections indicate av-
erage subtype-specific risks, while individual risk prediction
should also consider polygenic modifiers, family history, and
lifestyle and reproductive factors, as well as the risk of devel-
oping cancers at other sites.41 The age- and subtype-specific
risk estimates (eTable 6 in Supplement 2 and eFigure 13 in
Supplement 1) may be used to refine BC risk prediction algo-
rithms, such as BOADICEA.41

These results may also inform guidelines for eligibility for
gene panel sequencing and BC surveillance in the general popu-
lation. The combined prevalence of pathogenic variants in any
of the 9 genes reached 10% for TN cases in those who received
a diagnosis when younger than 60 years and HR+ERBB2− high-
grade and HR+ERBB2+ cases in those who received a diagnosis
at 40 years or younger (in HR−ERBB2+ cases, the prevalence was
9.4%). These are slight underestimates of the true frequency be-
cause some variants deleterious to gene function, notably large
gene rearrangements, will have been missed in the targeted
sequencing.6

Tumor characteristics can also be used in determining
whether variants of uncertain significance are likely to be
pathogenic based on the assumption that the tumor charac-
teristics of pathogenic variants of uncertain significance will
be similar to known pathogenic variants.42 Therefore, these
data should improve the precision of variant classification al-
gorithms and extend them to a larger set of genes.

Strengths and Limitations
The strengths of this study are its large sample size (42 680 cases
and 46 387 control participants) and sampling of cases inde-
pendent of family history, while most earlier investigations have
involved women who were ascertained in genetics clinics and
selected based on family history, genotype, or pathology. The
large sample size allowed us to obtain unbiased estimates of ORs
and age interaction effects, while the sampling framework pro-
vided results that are particularly relevant as gene panel test-
ing becomes applied at a general population level. Cases and
control participants underwent sequencing on the same plat-
form and using a single variant calling algorithm. We ana-
lyzed a comprehensive set of variables and their associa-

Figure 3. Estimates of Cumulative Risks of Breast Cancer by Age
and Hormone Receptor (HR)–Positive Subtype for Protein-Truncating
Variants in 8 Breast Cancer Susceptibility Genes
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Age-, gene-, and subtype-specific cumulative risks were calculated as described
in the Methods and eMethods in Supplement 1. Baseline incidence rates were
derived from UK breast cancer incidence rates for 2016 (https://www.
cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-
cancer-type/breast-cancer/incidence-invasive).
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tions. Finally, the results found using 2 different imputation
methods, Multiple Imputation by Chained Equations and an
EM algorithm were consistent (eTable 9 in Supplement 1).

Despite the large size of this study, the sample size with
complete pathology data was still limited for some genes. For
example, ERBB2 status was missing for approximately 43% of
samples, although missingness is likely to be random with re-
spect to genotype, and imputation methods performed well.
There was also minor heterogeneity in definition of stage,
grade, and cutoffs for ER, PR, and ERBB2 across studies. The
subtypes defined by immunohistochemical markers do not
align perfectly with intrinsic subtypes defined by expression
profiles, such as PAM-50,43,44 but such data are not available
in large-scale epidemiological studies or routine practice. Fi-

nally, most participants were of European descent, and larger
studies of women from other racial and ethnic groups will be
important.

Conclusions
This case-control study suggests that rare variants in BC sus-
ceptibility genes display marked heterogeneity with respect
to tumor phenotype, but also similarities between genes that
are consistent with known biological functions. This present
study provides detailed quantification of subtype-specific BC
risks; these can potentially improve risk prediction models and
breast cancer prevention strategies.
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Figure 4. Estimates of Cumulative Risks of Breast Cancer by Age and Hormone Receptor (HR)–Negative Subtype
for Protein-Truncating Variants in 8 Breast Cancer Susceptibility Genes
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Age-, gene-, and subtype-specific cumulative risks were calculated as described
in the Methods and eMethods in Supplement 1. Baseline incidence rates were
derived from UK breast cancer incidence rates for 2016 (https://www.

cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-
type/breast-cancer/incidence-invasive).
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