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Abstract: We tested associations between 13 established genetic variants and type 2 diabetes (T2D) 

in 1371 study participants from the Volga-Ural region of the Eurasian continent, and evaluated the 

predictive ability of the model containing polygenic scores for the variants associated with T2D in 

our dataset, alone and in combination with other risk factors such as age and sex. Using logistic 

regression analysis, we found associations with T2D for the CCL20 rs6749704 (OR = 1.68, PFDR = 3.40 

× 10−5), CCR5 rs333 (OR = 1.99, PFDR = 0.033), ADIPOQ rs17366743 (OR = 3.17, PFDR = 2.64 × 10−4), 

TCF7L2 rs114758349 (OR = 1.77, PFDR = 9.37 × 10−5), and CCL2 rs1024611 (OR = 1.38, PFDR = 0.033) 

polymorphisms. We showed that the most informative prognostic model included weighted pol-

ygenic scores for these five loci, and non-genetic factors such as age and sex (AUC 85.8%, 95%CI 

83.7%–87.8%). Compared to the model containing only non-genetic parameters, adding the poly-

genic score for the five T2D-associated loci showed improved net reclassification (NRI = 37.62%, 

1.39 × 10−6). Inclusion of all 13 tested SNPs to the model with age and sex did not improve the pre-

dictive ability compared to the model containing five T2D-associated variants (NRI = −17.86, p = 

0.093). The five variants associated with T2D in people from the Volga-Ural region are linked to 

inflammation (CCR5, CCL2, CCL20) and glucose metabolism regulation (TCF7L, ADIPOQ2). Fur-

ther studies in independent groups of T2D patients should validate the prognostic value of the 

model and elucidate the molecular mechanisms of the disease development. 
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1. Introduction 

The World Health Organisation defines diabetes mellitus as a metabolic disorder of 

multiple aetiology characterised by chronic hyperglycaemia with disturbances of car-

bohydrate, lipid, and protein metabolism resulting from defects in insulin secretion, in-

sulin action, or both [1]. Type 2 diabetes (T2D) is the most common form of diabetes, 

accounting for 90–95% of all diabetes cases. T2D is a complex condition emerging under 

the influence of various genetic, behavioural, and environmental factors, with ageing and 

obesity being the most prominent factors contributing to its development. 

Insulin resistance and persistent low-grade inflammation of the adipose tissue are 

important pathophysiological mechanisms of T2D progression [2]. Visceral adiposity 

promotes the release of adipokines (leptin, adiponectin) and adipochemokines (CCL2, 

CCL5, CCL17, CCL20), which are strongly implicated in insulin resistance and T2D [3]. 

Leptin acts through its specific receptor (LEPR), signalling satiety and suppressing ap-

petite [4], and contributing to the regulation of glucose metabolism in an insu-
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lin-independent manner (reviewed in [5,6]). LEPR deficiency is associated with hyper-

glycaemia, hyperinsulinaemia, and insulin resistance [7]. Adiponectin mediates insulin 

sensitivity in peripheral tissues [8], and the rs17366743 variant at the ADIPOQ gene locus 

is associated with T2D [9,10]. Adiponectin also exerts its antidiabetic effect by suppress-

ing inflammation [11]. Inflammatory cytokines including chemokines are involved in the 

development of T2D [12]. The results of a recent meta-analysis have demonstrated that 

levels of CCL2, CCL5, CCL11, and CX3CL1 chemokines were significantly higher in 

people with T2D than in the control participants [13].  

In addition to leptin, other mediators play an important role in the central regulation 

of glucose metabolism and the development of T2D. N-methyl-D-aspartate (NMDA) re-

ceptor inhibition has been shown to increase, synchronise, and stabilise the activity of 

pancreatic beta cells [14]. Carbohydrate metabolism is closely interconnected with other 

homeostatic processes, particularly involving lipids. Triglyceride-lowering alleles in 

lipoprotein lipase gene (LPL) locus were associated with a lower risk of T2D [15]. The 

expression of the low-density lipoprotein receptor-related protein 5 (LRP5) gene was 

upregulated in a T2D model [16]. Hyperactivation of Lrp5-dependent signalling had a 

protective effect in hyperglycaemia and improved peripheral glucose metabolism in an 

insulin independent manner [17].  

Genome-wide association studies (GWAS) have identified a number of loci associ-

ated with T2D; the most robust association was detected for polymorphisms at the tran-

scription factor 7-like 2 (TCF7L2) locus [18]. Polygenic risk scores were shown to be a 

valuable tool for identifying the risk of many common disorders, providing a refined in-

sight into disease pathogenesis [19]. A recent study analysing the transferability of T2D 

association findings between Europeans and British South Asians established the need 

for multi-ancestry studies to improve the characterisation of genetic contribution to the 

disease development, and showed that a polygenic risk score optimised for the specific 

population improved the identification of T2D risk [20]. 

In this cross-sectional study, we aimed to examine an association between common 

variants in genes implicated in the development of T2D, and evaluated the predictive 

value of polygenic scores calculated from the variants associated with T2D alone and in 

combination with other risk factors such as age and sex. 

2. Results 

2.1. Association Analysis  

We tested associations between 13 genetic variants and T2D in the entire study 

group (N = 1371) from the Volga-Ural region of the Eurasian continent using logistic re-

gression analysis under the additive genetic model adjusted for age and sex. The analysis 

showed that five SNPs were associated with diabetes: rs1024611 at the CCL2 gene locus, 

rs6749704 at CCL20, rs333 at CCR5, rs17366743 at ADIPOQ, and rs114758349 at TCF7L2 

(Table 1). The association of ADIPOQ rs17366743 and TCF7L2 rs114758349 with T2D re-

mained significant after additional adjustment for BMI (Supplementary Table S1), even 

though the analysis had lower power due to BMI data being available for only a limited 

number of participants (N = 589). 

Polygenic score analysis assumes an additive genetic architecture with the summing of 

the effects of independent risk alleles [21]. We utilized the odds ratio (OR) values obtained 

for the genetic variants significantly associated with T2D in the regression analysis as 

weights for the polygenic score calculation. Additionally, we calculated both unweighted 

and weighted polygenic scores using all 13 genetic variants included in the study. 
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Table 1. The results of the analysis of association between the studied genetic variants and type 2 

diabetes in the study group. 

Chr 1 
Position  

GRCh37 2 
Gene SNP 3 EA 4 MA 5 

MAF 6 
PHWE 7 OR 8 (95% CIOR) 9 P 10 PFDR 11 

Control T2D 

1 66,036,441 LEPR rs1137100 G G 0.28 0.31 0.429 1.24 (0.89‒1.72) 0.202 0.348 

2 228,677,842 CCL20 rs6749704 * C C 0.28 0.39 0.094 1.68 (1.35‒2.09) 2.61 × 10−6 3.40 × 10−5 

3 39,307,162 CX3CR1 rs3732378 A A 0.21 0.21 0.092 1.01 (0.77‒1.31) 0.954 0.954 

3 46,414,944 CCR5 rs333 * D D 0.06 0.10 1.000 1.99 (1.16‒3.42) 0.013 0.033 

3 186,572,089 ADIPOQ rs17366743 * C C 0.03 0.09 1.000 3.17 (1.64‒6.12) 6.10 × 10−4 2.64 × 10−3 

8 19,819,077 LPL rs320 G G 0.24 0.26 0.294 1.21 (0.90‒1.62) 0.214 0.348 

10 114,758,349 TCF7L2 rs7903146 * T T 0.25 0.39 0.616 1.77 (1.37‒2.29) 1.44 × 10−5 9.37 × 10−5 

11 68,201,295 LRP5 rs3736228 T T 0.10 0.12 0.490 0.97 (0.64‒1.46) 0.874 0.947 

12 14,018,777 GRIN2B rs7301328 G C 0.43 0.40 0.103 1.16 (0.95‒1.41) 0.150 0.325 

16 57,447,414 CCL17 rs223828 C T 0.14 0.12 1.000 1.20 (0.86‒1.65) 0.280 0.405 

17 32,579,788 CCL2 rs1024611 * A G 0.31 0.24 0.627 1.38 (1.08‒1.76) 0.011 0.033 

17 32,612,402 CCL11 rs16969415 T T 0.06 0.06 1.000 1.13 (0.74‒1.74) 0.565 0.734 

17 34,207,780 CCL5 rs2107538 C T 0.25 0.25 0.261 0.95 (0.73‒1.22) 0.662 0.783 
1 Chr—chromosome, 2 GRCh37—Genome Reference Consortium Human Build 37; 3 SNP—single 

nucleotide polymorphism; 4 EA—effect allele; 5 MA—minor allele; 6 MAF—minor allele frequency; 
7 PHWE—level of significance for the Hardy-Weinberg procedure; 8 OR—odds ratio; 9 95%CIOR—95% 

confidence interval for the odds ratio; 10 p—level of significance; 11 PFDR—level of significance with 

the Benjamini–Hochberg adjustment. * The variants significantly associated with the type 2 diabe-

tes genetics after the correction for multiple testing are denoted by an asterisk. 

Figure 1 shows the distribution of the weighted and unweighted polygenic scores in 

the groups of patients with T2D and healthy individuals. The mean values for both 

weighted and unweighted polygenic scores were higher among participants with T2D 

compared to the control participants (5.56 ± 0.10 vs. 4.61 ± 0.05, and 3.40 ± 0.06 vs. 2.87 ± 

0.03, respectively). 

 

Figure 1. Density plots characterising the distribution of polygenic scores. (A). The graph character-

ises the distribution of density of the weighted risk scores in the control participants (red) and in 

people with type 2 diabetes (blue). (B). The graph characterises the distribution of density of the un-

weighted polygenic scores in the control participants (red) and in people with type 2 diabetes (blue). 
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The results of the analysis of the weighted polygenic scores with T2D showed that 

the combined effect of the five tested SNPs was associated with an increased disease risk 

(OR [95%CIOR] =1.33 [1.24–1.42], p = 4.56 × 10−18). The data obtained from the analysis of 

the unweighted polygenic scores also showed the association of the joint effect of these 

polymorphisms on the higher T2D risk (OR [95%CIOR] = 1.62 [1.45–1.82], p = 2.14 × 10−17). 

2.2. Receiver Operator Characteristic (ROC) Analysis 

We used ROC-analysis to test the predictive abilities of the models constructed us-

ing the calculated unweighted and weighted polygenic scores and clinical parameters 

(age, sex, and BMI). The performances of the one-parameter prognostic models are 

shown in Supplementary Figure S1. The largest area under the curve (AUC) was ob-

served for the model using age as a predictor of T2D (AUC 80.5%, 95%CI 78.2%–82.9%), 

the smallest was for BMI (AUC 59.5%, 95%CI 54.6%–64.3%). The results of the ROC 

analysis showed an AUC of 64.6% (95%CI 61.4%–67.8%) for the unweighted (Figure 2A), 

and 61.5% (95%CI 58.2%–64.8%) for the weighted (Figure 2B) polygenic score models 

constructed using five SNPs associated with T2D. 

 

Figure 2. Receiver operator characteristic (ROC) curves visualising the prognostic abilities of the 

models to predict type 2 diabetes. (A) Model was constructed using the unweighted polygenic 
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score calculated for the five genetic variants associated with type 2 diabetes in our study. (B) Model was 

constructed using the weighted polygenic score calculated for the five genetic variants associated with 

type 2 diabetes in our study. (C) Model was generated using the unweighted polygenic score for the 

five genetic variants in combination with age and sex. (D) Model was generated using the weighted 

polygenic score for the five variants in combination with age and sex. Sensitivity is a measure of true 

positive results, specificity rates true negative results. AUC (area under the ROC-curve) is a parameter 

used to evaluate the performance of a model (i.e., the ability to distinguish between two classes). An 

AUC value of 90% and higher is usually interpreted as an excellent quality of the model, 80%–90% is 

very good, 70%–80% is good, 60%–70% is satisfactory, and 50–60% is unsatisfactory. 

The model with unweighted polygenic scores demonstrated a greater predictive ability 

towards T2D. This may reflect the potential of an unweighted estimator to be more robust 

against errors in estimating the effect sizes arising from a limited sample size, population 

heterogeneity, “winner’s curse” bias, and confounding by population structure [22]. Our re-

sults indicate a moderate predictive ability of either model to correctly classify individuals 

with and without T2D. To evaluate the prognostic value of the predictors, we tested models 

including clinical factors (age + sex, age + BMI, age + sex + BMI). The largest AUC was ob-

served for the model containing age and sex (AUC 83.8%, 95% CI 81.7%–86.0%) (Supple-

mentary Figure S2D). We then explored the prognostic abilities of models containing 

non-genetic factors potentially influencing T2D risk in combination with the unweighted 

(Supplementary Figure S3) and weighted polygenic scores (Supplementary Figure S4). We 

established that the model including age, sex, and weighted polygenic score demonstrated 

the optimal predictive ability (85.8%, 95% CI 83.7%–87.8%) (Figure 2D). 

Additionally, we tested the models generated using the polygenic scores calculated 

for all 13 genetic variants included in the study, and discovered that the model con-

structed using the unweighted polygenic score for 13 SNPs had a lower predictive ability 

than the model with unweighted polygenic score for five SNPs (AUC 59.8%, 95% CI 

56.6%–62.9%, vs. AUC 64.6%, 95% CI 61.4%–67.8%, respectively, p = 4.96 × 10−4) (Sup-

plementary Figure S5A,C, Supplementary Table S2). The prognostic value of the models 

constructed with the weighted scores calculated for five and 13 SNPs was virtually the 

same (AUC 61.5%, 95% CI 58.2%–64.8% vs. AUC 61.5%, 95% CI 58.3%–64.7%, respec-

tively, p = 0.995) (Supplementary Figure S5B,D, Supplementary Table S2). Testing the 

models including non-genetic predictors in combination with either the unweighted 

(Supplementary Figure S6) or weighted polygenic score for 13 genetic variants (Supple-

mentary Figure S7), we found that among them, the model derived from the unweighted 

polygenic score for 13 SNPs together with age and sex had the best predictive value 

(85.1%, 95% CI 83.0%–87.2%) (Supplementary Figure S6D) and was lower than the op-

timal prognostic value for the model constructed with weighted polygenic score for five 

SNPs in combination with age and sex (Figure 2D), but the differences were not signifi-

cant (p = 0.231) (Supplementary Table S2). 

2.3. Net Reclassification Improvement Analysis 

We performed net reclassification improvement (NRI) analysis using the models 

containing only non-genetic data (Age + Sex and Age + Sex + BMI) as the baseline, and 

compared them to the models with added polygenic scores for five genetic variants as-

sociated with T2D and all 13 variants included in the study (Table 2). The addition of 

both 5-SNP-based and 13-SNP-based weighted polygenic scores to the model constructed 

using age and sex improved the reclassification (total NRI 37.62% and 36.72%, NRI for 

cases 5.51% and 13.98%, NRI for controls 32.11% and 22.74%, respectively). The addition 

of the 5-SNP and 13-SNP weighted polygenic scores to the model with age, sex, and BMI 

showed an even greater improvement of reclassification (total NRI 41.72% and 41.50%, 

NRI for cases 8.70% and 16.85%, NRI for the controls of 33.02% and 24.65%, respectively). 

Comparing the models with the 13-SNP polygenic score to the models built with 5-SNP 

polygenic score, we found that inclusion of the additional variants to the models con-

taining the non-genetic parameters did not significantly improve the reclassification 
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(Table 2). The model with 13SNP Polygenic Score +Age + Sex compared to the 5-SNP 

model demonstrated a reduced overall predictive accuracy as well as worse reclassifica-

tion for both the cases and controls, while the model with 13SNP Polygenic Score +Age + 

Sex + BMI showed better prediction for the total sample and for the controls, and worse 

reclassification of cases, but the results did not reach the level of statistical significance. 

Table 2. The net reclassification improvement in the models with added parameters compared to 

the baseline. 

 

Baseline (Age + Sex) 

5SNP 1 Polygenic Score +Age + Sex 13SNP Polygenic Score +Age + Sex 

NRI 2 SE 3 95% CI 4 p-value 5 NRI SE 95% CI p-value 

Total 37.62 7.80 19.29–49.00 1.39 × 10−6 36.73 7.14 22.87–50.97 2.73 × 10−7 

Cases 5.51 5.88 −4.07–18.18 0.349 13.98 4.10 6.19–22.84 6.44 × 10−4 

Controls 32.11 4.80 16.88–36.21 2.17 × 10−11 22.74 4.24 13.65–30.23 8.30 × 10−8 

 

Baseline (Age + Sex + BMI 6) 

5SNP Polygenic Score +Age + Sex + BMI 13SNP Polygenic Score +Age + Sex + BMI 

NRI SE 95% CI p-value NRI SE 95% CI p-value 

Total 41.72 8.70 24.67–55.62 8.44 × 10−7 41.50 8.95 21.21–58.79 3.53 × 10−6 

Cases 8.70 4.65 0.26–18.37 0.061 16.85 5.10 7.61–27.15 9.58 × 10−4 

Controls 33.02 6.03 20.76–44.44 4.27 × 10−8 24.65 6.28 10.44–34.96 8.72 × 10−5 

 

Baseline (5SNP Polygenic Score +Age + Sex) Baseline (5SNP Polygenic Score +Age + Sex + BMI) 

13SNP Polygenic Score +Age + Sex  13SNP Polygenic Score +Age + Sex + BMI 

NRI SE 95% CI p-value NRI SE 95% CI p-value 

Total −17.86 10.63 −37.29–3.61 0.093 4.80 16.72 −29.60–34.48 0.774 

Cases −9.74 4.95 −18.43–1.17 0.049 −2.17 7.45 −16.09–13.49 0.770 

Controls −8.11 6.81 −21.65–5.19 0.234 6.98 10.53 −16.93–24.30 0.508 
1 SNP—single nucleotide polymorphism; 2 NRI—net reclassification improvement; 3 SE—standard 

error; 4 95% CI—95% confidence interval; 5 p-value—level of significance; 6 BMI—body mass index. 

NRI data are given in percent. 

3. Discussion 

In our study, we tested the associations between 13 genetic variants and T2D, and 

evaluated the predictive ability of the model containing polygenic scores for the five 

variants that were found associated with T2D in participants from the Volga-Ural region 

of Russia, and the model constructed using all 13 genetic variants was included in the 

study. We showed that the most informative prognostic model included weighted pol-

ygenic scores for the five T2D associated SNPs, and non-genetic factors such as age and 

sex. Previous study has shown that integrating polygenic risk scores with simple ques-

tionnaire-based risk factors including demographic, lifestyle, medication, and comorbid-

ity data improved the risk reclassification [23]. Poly-exposure risk scores derived from 

the non-genetic variables were reported to identify individuals with an elevated risk of 

T2D [24]. The genetic structure of the population (population-specific patterns of linkage 

disequilibrium) could play a role in the observed effects of the studied variants on T2D 

differing from those previously reported, and could influence the different prognostic 

values of the weighted and unweighted polygenic scores. The use of multi-ethnic poly-

genic risk scores was demonstrated to outperform the polygenic risk scores derived in 

largely European populations for T2D risk prediction [25]. Inclusion of top-ranked SNPs 

together with gender and ethnicity affected the performance of the polygenic scores [26]. 

An increasing number of genetic variants for the calculation of the polygenic score could 

increase the predictive ability of the model [27]; however, the polygenic score derived 

from genome-wide T2D loci has demonstrated prognostic ability characterised by an 

AUC of 56%, while adding age and sex to the model has been shown to improve its pre-
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dictive performance [28]. Our results indicate that expanding the polygenic score by in-

cluding all of the tested SNPs did not significantly improve the predictive ability of the 

model (Table 2, Supplementary Table S2, Supplementary Figure S5). Replication of these 

findings in an independent sample is required to validate the predictive ability of the 

obtained model. 

Among the T2D-associated signals found in our study, the rs7903146 variant at the 

TCF7L2 locus is the most well-established genetic marker for T2D and the largest-effect 

common-variant signal for T2D in Europeans [29], first identified in 2007 in a French 

population [30]. The association between rs7903146 and T2D transcends ancestry and has 

been replicated across numerous populations including Finnish [31], Icelandic [32], 

Danish [33], Japanese [34], Indian [35], Punjabi Sikh [36], Mexican and Latin American 

[37,38], African American [39], Sub-Saharan African [40] populations as well as in multi-

ple multi-ancestral meta-analyses [41–44]. Most recently, a meta-analysis combining the 

data from 122 GWAS for 180,834 individuals with T2D and 1,159,055 controls of Euro-

pean, East Asian, South Asian, African, African American, and Hispanic individuals with 

recent admixture of American, African and European ancestry [45] confirmed the asso-

ciation of rs7903146 with T2D. The risk of T2D conferred by the TCF7L2 rs7903146 variant 

was reportedly independent from BMI and obesity [46,47]. However, testing the associa-

tion between the TCF7L2 rs7903146 variant and subtypes of T2D, determined according 

to various disease progression and clinical complications [48], has shown that rs7903146 

was associated with severe insulin-deficient diabetes (SIDD), mild obesity-related dia-

betes (MOD), and mild age-related diabetes (MARD), but not with severe autoimmune 

diabetes (SAID) or severe insulin-resistant diabetes (SIRD) [49]. TCF7L2 rs7903146 has 

been linked to insulin secretion [50], and further analysis revealed that rs7903146 over-

laps with an islet enhancer and multiple islet-relevant transcription factor binding sites, 

and is located in islet-selective open chromatin [29,51]. In the current study, the associa-

tion between TCF7L2 rs7903146 variant and T2D remained significant after the adjust-

ment for BMI (Supplementary Table S1), which is in agreement with previous reports 

that the rs7903146 variant confers T2D risk independently from BMI and obesity [46,47]. 

The rs17366743 SNP, a missense variant (Y111H) in exon 3 of ADIPOQ gene encoding 

adiponectin precursor, has been previously linked to an increased diabetes incidence and 

higher fasting glucose level in the Framingham Offspring Study [52] and has demonstrated 

an influence on adiponectin levels [53]. In our study, ADIPOQ rs17366743 showed the most 

pronounced effect on T2D risk, also independent from BMI (OR = 3.08, PFDR = 0.013, and OR = 

3.17, PFDR = 2.64 × 10−3 with and without adjustment for BMI, respectively). 

CCR5 rs333 was previously implicated in type 1 diabetes (T1D) risk [54] and has 

been shown to be associated with serum levels of CCL4 [55]. CCL4 was upregulated in 

both people with T1D and T2D [56], and its inhibition had a protective effect on pancre-

atic beta-cells, increased insulin sensitivity, and delayed the progression of hypergly-

caemia, suggesting the critical role of CCL4-related inflammation in the progression of 

diabetes [57]. CCL2 rs1024611 is associated with gestational diabetes [58], diabetic reti-

nopathy [59,60] and diabetic nephropathy [61]. The rs1024611 polymorphism is located in 

the CCL2 enhancer region and its G allele has been associated with increased CCL2 levels 

in serum [62,63], cerebrospinal fluid [64], hepatic cells [65], and skin fibroblasts [66], alt-

hough in a more recent GWAS, the association between rs1024611 and CCL2 mRNA lev-

els in serum and plasma only reached nominal significance [67]. The association between 

the rs6749704 variant in the promoter region of the CCL20 gene and T2D was initially 

discovered in the ethnic group of Tatars [68]. This polymorphism has been linked to the 

immune response during HIV/AIDS infection [69], while activation of the CCL20-CCR6 

axis has been discussed as a possible mechanism connecting obesity, pancreatic beta-cell 

inflammation, and diabetes [70]. 

Other studied genetic variants were not associated with T2D in our findings. It is 

possible that the modest sample size limited our ability to detect associations with the 

smaller effect variants. Another limitation of the current study was the lack of phenotypic 
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information for some participants due to the multicentric nature of the data collection. 

These factors limit our ability to extrapolate the results of our study to other populations 

and require replication of the findings in an independent sample. 

4. Materials and Methods 

4.1. Study Sample 

We collected information on 496 people with type 2 diabetes (T2D) (≥40 years) and 

875 control participants without diabetes from April 2012 to December 2017 at Ufa City 

Hospital No. 21 and at the Bashkir State Medical University Clinic (Ufa, Russian Federa-

tion). The recruitment process for both the T2D and the control group has been described 

elsewhere [68,71]. Briefly, the inclusion criteria for the T2D group were: aged 35 years 

and older; T2D diagnosis established according to WHO criteria (1999–2013); lack of 

clinical symptoms of other types of diabetes; not related to other participants in the 

study. Inclusion criteria for the control group were: aged 35 years and older; absence of 

any clinical or laboratory symptoms of metabolic disorders; absence of a family history of 

diabetes; and not being related to other participants in the study. To minimise possible 

errors arising from population stratification, all study participants were selected from the 

populations historically rooted in the Volga-Ural region of the Russian Federation. Ethnic 

origin (up to the third generation) and the presence or absence of a family history of di-

abetes for all participants was established by conducting direct interviews with the po-

tential participants. 

The study was carried out in accordance with the Helsinki Declaration. The study 

protocol was approved by the Local Ethical Committee of Institute of Biochemistry and 

Genetics of Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC 

RAS), Ufa, Russia (Ufa, Protocol No. 8, 14 March 2012). All participants provided written 

informed consent. 

4.2. Anthropometric Measurements and Biochemical Assays 

Body weight and height were measured while participants were barefoot and wearing 

light indoor clothing. Body mass index (BMI; kg/m2) was calculated as body weight (kg) di-

vided by height squared (m2). Blood samples were collected after an overnight (12 h) fast and 

2 h after a meal (for the 2-h postprandial test). HbA1c was measured by high-performance 

liquid chromatography (ADAMS A1c HA-8182, Arkray Inc., Kyoto, Japan). Plasma glucose 

was measured by the glucose oxidase technique (Cobas Integra, Roche Diagnostics, Basel, 

Switzerland); cholesterol, triglycerides, high density lipoproteins (HDL), low density lipo-

proteins (LDL) were measured by photometry technique (Olympus, Hamburg, Germany). 

Serum C-peptide was measured by chemiluminescent immunoassays (CLIA) (human CPR 

CLIA Kits; IMMULITE 2000 (DPC Roche, Siemens, Los Angeles, CA, USA). The clinical 

characteristics of the study group are shown in Table 3. 

Table 3. Clinical characteristics of the study group. 

Characteristic 
T2D 7, N = 496 

Mean ± SD 8 

Control, N = 875 

Mean ± SD 8 
p 9 

Age (years) 55.21 ± 9.77 49.65 ±10.9 >0.001 * 

Sex: female (N, %) 370 (74.5) 300 (34.3) >0.001 * 

Duration of T2D (years) 7.23 ± 5.66 — — 

Age at onset (years) 54.53 ± 9.27 — — 

BMI 1 (kg/m2) 30.23 ± 5.36 28.93 ±5.13 0.003 * 

Fasting blood glucose (mmol/L) 7.35 ± 2.34 4.88 ± 0.71 >0.001 * 

PPG 2 (mmol/L) 9.38 ± 2.62 — — 

HbA1c 3 (%) 7.41 ± 1.01 4.89 ±0.60 >0.001 * 

Total cholesterol 5.52 ± 1.14 5.09 ±0.64 >0.001 * 
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Triglycerides 1.67 ± 1.16 1.48 ± 0.60 0.036 

HDL 4 1.19 ± 0.50 1.09 ±0.37 0.016 

LDL 5 3.41 ± 4.30 2.96 ± 1.08 0.148 

AC 6 3.76 ± 1.30 3.59 ±0.85 0.115 

C-peptide 2.16 ± 1.35 2.31 ± 0.94 0.166 
1 BMI—body mass index; 2 PPG—postprandial glucose; 3 HbA1c—glycated haemoglobin (haemo-

globin A1c); 4 HDL—high density lipoprotein; 5 LDL—low density lipoprotein; 6 AC—atherogenic 

coefficient; 7 T2D—type 2 diabetes 8 SD—standard deviation; 9 p—significance level. Statistically 

significant differences are denoted by an asterisk. 

4.3. Genotyping and Quality Control 

Whole venous blood samples were obtained from each participant, stored at −4 °C, 

and used for total DNA extraction. DNA extraction and genotyping procedures were 

performed as previously described [68,71–78]. Genetic variants for the analysis were se-

lected based on the previously detected associations with diabetes and related traits 

(Supplementary Table S3), the results of the Phenome-Wide Association Studies (Phe-

WAS), and the variants selected for the study included those associated with metabolic 

traits (cholesterol levels, fat mass, T2D) and related disorders including inflammatory 

diseases and complications caused by T2D (Supplementary Table S4). Functional anno-

tations of the studied genetic variants are provided in Supplementary Table S5. Allelic 

discrimination was performed by real-time polymerase chain reaction (PCR) with BioRad 

CFX96 (Bio-Rad Laboratories Inc., Hercules, CA, USA) using TaqMan SNP Genotyping 

Assays (Thermo Fisher Scientific, Waltham, MA, USA). As the quality control, 5% of the 

genotyped samples were randomly selected for re-genotyping, and all newly obtained 

results were identical to the previously determined genotyping data. 

4.4. Power Analysis 

Quanto software (https://pphs.usc.edu/biostatistics-software/ (accessed on 21 Sep-

tember 2022)) was used to calculate the statistical power of the study to detect associa-

tions with each genetic variant using the OR values established in previous studies 

(Supplementary Table S3), a disease prevalence of 11.6% [79] with a significance level 

<0.05. The obtained power estimations are provided in Supplementary Table S3. 

4.5. Association Analysis 

We tested the association between the studied loci and T2D using logistic regression 

analysis under the additive genetic model adjusted for age, sex, and BMI implemented in 

PLINK 1.9 [80]. The additive genetic model assumes that having two risk alleles has twice 

the impact on the outcome compared to carrying one risk allele. We applied the Benja-

mini–Hochberg procedure to control for the expected ratio of false positive classifications 

(false discovery rate—FDR) [81]. PFDR values of less than 0.05 were considered significant. 

4.6. Polygenic Score Calculation 

Weighted and unweighted polygenic scores were calculated from the genetic variants 

significantly associated with T2D in the study group according to the results of a logistic re-

gression analysis. The OR values established for these loci in the regression analysis under 

the additive genetic model with sex and age as covariates were used as weights for the risk 

alleles. If OR values detected in the initial association analysis were less than 1.0, we repeated 

the analysis using the alternative allele as the effect allele. The polymorphic variants located 

on the same chromosome were tested for linkage equilibrium. 

4.7. Receiver Operator Characteristic Analysis 

The receiver operator characteristic (ROC) analysis was applied to test the prognostic 

value of the obtained polygenic scores for T2D. The efficacy of the models was estimated 
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using the area under the ROC curve (AUC), which is the measure of the ability of a classifier 

to distinguish between two outcomes. The models for T2D prediction were constructed us-

ing the Epi: Statistical Analysis in Epidemiology [82] and pROC [83] R packages. 

4.8. Net Reclassification Analysis 

We assessed the improvement in risk prediction by the models with added param-

eters using the net reclassification index (NRI) [84]. Continuous NRI was obtained with 

the nribins function implemented in the nricens: NRI for Risk Prediction Models with 

Time to Event and Binary Response Data R package [85]; 95% confidence intervals for 

NRI were calculated by bootstrapping. 

5. Conclusions 

The polygenic approach has shown its efficacy in predicting susceptibility to T2D, 

especially in combination with other, non-genetic risk factors such as age and sex. The 

five variants associated with T2D in people from the Volga-Ural region were linked to 

inflammation (CCR5, CCL2, CCL20) and glucose metabolism regulation (TCF7L, ADI-

POQ2). The addition of other tested genetic loci previously associated with glucose me-

tabolism and type 2 diabetes did not significantly improve the predictive ability of the 

model. Further studies in independent groups of T2D patients should validate the 

prognostic value of the model and further elucidate the molecular mechanisms of the 

disease development. 
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